Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 March 2023 | Story Jóhann Thormählen | Photo Supplied
Nomsa Mathontsi is a senior member of the Kovsie women’s football team and has played in two Varsity Football and three USSA tournaments.

Nomsa Mathontsi senior member of the University of the Free State (UFS) Women’s Football team has, despite enormous challenges excelled and achieved remarkable heights on and off the field.

Ms Mathontsi has been an avid sportsperson from an early age. Among her many extraordinary achievements the talented Ms Mathontsi has also been on the South African Women’s National Soccer squad Banyana Banyana.

What many may not know though, is that this is notwithstanding the obstacle Ms Mathontsi overcame in order to reach such heights. The Kovsie striker has limited hearing in her right ear and received a cochlear implant before she began her UFS journey in 2018.

I got affected when I was really young. I was doing athletics. This one time I had a very hectic race, which blocked my right ear –

At the University of the Free State Kovsie Health takes into account the medical history of its’ high-performance athletes who are closely monitored with the aim of achieving optimal performance. As in the case of Ms Mathonsi it is most important that the medical practitioner, Dr Gerhard Jansen, and his team at Kovsie Health take into consideration her medical history. 

Kovsie Health provides a range of services to the UFS football programme that include: medical screenings; injury diagnosis; treatment; and rehabilitation. 

Compulsory medicals

“I got affected when I was really young. I was doing athletics. This one time I had a very hectic race, which blocked my right ear.

“At first my family thought it was going to be OK, until we realised it was extremely serious and we had to do medicals,” the versatile player says.

Ms Mathontsi, a BAdmin student in Economic and Management Sciences has an implant in her skull but cannot play with her hearing device.

“Even the implant itself can be dangerous. If someone hits me with an elbow or something hard or (on the) head, it will hurt.”

It is compulsory for all UFS football players to take the South African Football Association medicals. Kovsie Health assists players in this process. This is conducted before each new season and include a basic medical, family and practice history, basis line tests, injury assessments etc.

According to Jansen, Kovsie Health needs to be aware of Mathontsi’s medical history so that they may make informed decisions and provide guidance. We will document it and if she should get concussion you will have to take it into account. We for instance know we shouldn’t see a loss of hearing as a negative sign.”

Special Kovsie football family

Mathontsi has represented the UFS in two Varsity Football campaigns, three USSA tournaments and plays in the Free State Sasol League.

Although she hasn’t made her international debut, she received two call-ups to the South African women’s squad and trained with Banyana Banyana.

The number 8 loves her UFS football family and says she has also learnt to balance sport and university.

“I think it is the bond and relationships we have with each other on and off the field that makes it special.

“I have learnt a lot in terms of leadership and how to take leadership as a senior player in the team.”

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept