Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 May 2023 | Story Samkelo Fetile | Photo iFlair Photography
Modular Lecture Building
The Modular Lecture Building on the UFS’s Bloemfontein Campus.

The University of the Free State’s (UFS) Modular Lecture Building on its Bloemfontein Campus recently received a National Merit Award from the South African Institute of Architects (SAIA). The awards were announced at the 2021/2022 Corobrik SAIA Awards of Merit and Awards for Excellence ceremony in Johannesburg.

The multi-functional Modular Lecture Building, considered a hub for innovative learning, was designed by Roodt Architects in partnership with GXY Architects.

The adjudication panel received a total of 42 architectural projects from around the country, including infrastructure developments in the public and private sector. The SAIA Awards programme is structured over a two-year period and is conducted in two stages. In stage one regional awards for architecture are presented by the nine regional institutes affiliated to SAIA. In stage two the winning regional projects that are consequently entered into the national awards receive either a Commendation, an Award of Merit, and/or an Award for Excellence, which recognises exceptional achievement in the field of architecture.

In their citation the adjudicators noted that the Modular Lecture Building sets a benchmark for rational planning and technical efficiency and helps complete the campus urban framework through its placing and material choices.

Multi-functional spaces for students

Nico Janse van Rensburg, Senior Director at UFS University Estates, said the recognition is a testament to the UFS’s aspirations to renew, rejuvenate, regenerate, and revisit facilities and infrastructure.

“This award proves that excellence can be achieved with a reasonable set budget,” Janse van Rensburg said. “Energy efficiency and green building principles can be achieved by careful planning and teamwork.”

The Modular Lecture Building offers a variety of much-needed flexible teaching and learning spaces. “I have been using the facilities in this building for two years now, and I can say the building is much more spacious and conducive to studying,” said Hymne Spies, a third-year BSc student majoring in biochemistry and genetics. “The many plugs make it more efficient for studying, as one can plug in his or her laptop. There is also a nice computer lab for us to make use of.”

The UFS is proud that the construction of this facility forms part of a bigger endeavour – to create a cohesive campus identity that improves core business and to further extend its innovation and excellence as per its Vision 130.

Take a tour of the new Modular Lecturing Space and Assessment Centre Building:

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept