Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 November 2023 | Story Reuben Maeko | Photo SUPPLIED
Prof Nyoni, Dr Omar Mohamed Al-Ansari and Dr James Campbell
Prof Nyoni hands over the Winterthur Doha Interprofessional Declaration to the President of Qatar University Dr Omar Mohamed Al-Ansari and the WHO Director for Health Workforce Dr James Campbell at the All Together Better Health Conference in Doha, Qatar.

A delegation of five academics from the University of the Free State (UFS) made significant contributions at the recently concluded All Together Better Health Conference (ATBH) in Doha, Qatar. Led by Prof Champion Nyoni, Senior Researcher in the UFS School of Nursing and current Chairperson of Interprofessional.Global, the team showcased their research to an international audience, further solidifying UFS’s commitment to advancing interprofessional education and collaborative practices. 

Engagement at the Conference

The esteemed UFS academics, including Dr Lizemari Hugo-van Dyk (School of Nursing), Dr Anke van der Merwe (School of Health and Rehabilitation Sciences), Dr Riaan van Wyk (Clinical Skills and Simulation Unit), and Dr Benjamin Botha (Computer Science and Informatics), actively participated in the conference, presenting their research findings to over 600 delegates from around the world. The ATBH Conference brought together students, educators, researchers, and policymakers with a shared goal of advancing interprofessional education and collaborative practices. 

UFS’s leading role in Interprofessional Education

Interprofessional education (IPE), the focal point of the conference, involves collaborative learning among students from multiple health and social care professions. The UFS has been a trailblazer in the IPE domain, boasting a robust IPE programme that has been running successfully for nearly a decade.

Leadership excellence by Prof Nyoni

Prof Nyoni, as the Chair of Interprofessional. Global, played a pivotal role in the conference, showcasing leadership and communication excellence on a global scale. Interprofessional. Global is a confederation of regional networks worldwide purposed to embed IPE as part of mainstream training for the health workforce globally. His welcome address during the grand opening ceremony, attended by esteemed dignitaries including Her Highness Sheika Moza bint Nasser, the President of Qatar University, and the Director for Health Workforce at the World Health Organization (WHO), marked a momentous occasion. Moreover, Prof Nyoni presented the Winterthur-Doha Interprofessional Declaration to Qatar University and the WHO, symbolically endorsing IPE as a strategy to enhance global health outcomes. 

The Winter-Doha Interprofessional Declaration

Explaining the significance of the Winter-Doha Interprofessional Declaration, Prof Nyoni expressed his excitement, stating, “I am thrilled that the World Health Organisation was forthcoming to receive this declaration – symbolically endorsing IPE as a strategy to enhance our health outcomes.” He added that this declaration would influence global efforts towards true IPE integration, with global representatives within the IPE community contributing to this milestone. 

Research presentations by UFS Academics

The UFS academics delivered impactful presentations at the conference. Drs Hugo-van Dyk and Botha, along with Prof Nyoni, discussed “An Online Programme for Clinical Facilitators in Health Professions Education: A missed opportunity for IPE.” Additionally, they presented on desktop-based virtual reality to enhance role clarification in interprofessional education. Drs Van der Merwe and Van Wyk, along with Prof Nyoni, presented “Educator needs regarding a simulation debriefing programme: A missed opportunity for interprofessional practice at a South African University.” 

Global collaboration and appreciation 

Dr Botha, a member of the African Interprofessional Education Network (AfrlPEN), expressed appreciation for the opportunity, stating, “We have made good milestones globally and we are committed to continue to impact and influence the global space.” Dr van der Merwe echoed this sentiment, acknowledging the chance to connect with like-minded professionals worldwide and expressing gratitude to the UFS for facilitating this opportunity. 

Closing thoughts 

The UFS delegation’s active participation at the ATBH Conference not only underscores the university's commitment to advancing interprofessional education but also reinforces its global leadership in this critical domain. The contributions made at this prestigious event exemplify the UFS’s dedication to collaborative practices that enhance healthcare outcomes on a global scale. 

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept