Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 August 2024 | Story André Damons | Photo Supplied
Prof Patricks Voua Otomo
Prof Patricks Voua Otomo, Associate Professor and subject head of Department of Zoology and Entomology at the University of the Free State (UFS).

In an effort to alleviate the burden of water contamination, Prof Patricks Voua Otomo, Associate Professor in the Department of Zoology and Entomology at the University of the Free (UFS) is researching how mushrooms can be used to significantly reduce the toxicity of water.

The degradation of river systems in South Africa has been linked primarily to the inability of municipalities to properly treat wastewater. According to the 2022 Green Drop Report, out of the existing 850 wastewater systems across 90 municipalities, only 23 (or less than 3%) qualified for the Green Drop Certification. This underscores the depth and breadth of the wastewater treatment crisis in South Africa and its potential implications for human and environmental health.

In 2030, billions of people will still lack access to safe water, sanitation and hygiene services – the most basic human need for health and well-being. Target 6.1 of the United Nations (UN) Sustainable Development Goals (SDGs) – SDG 6 – aims to achieve universal and equitable access to safe and affordable drinking water for all, while target 6.3 is also looking to improve water quality by reducing pollution, eliminating dumping and minimising release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe re-use globally by 2030.

These challenges inform Prof Voua Otomo’s research, which focuses on the drivers of river pollution in the Qwaqwa region, ways to mitigate/remediate their effects, and the development of simple and quick methods to assess water quality. His research, which is part of the UFS 2023 Impact Report, has drawn attention to localised incidences of terrestrial and aquatic contamination linked to sewage sludge management by local wastewater treatment plants.

Using mycofiltration to reclaim the quality of contaminated water

In Qwaqwa, wastewater treatment plants, however, are not the only source of river pollution, as a significant amount of river pollutants emanates directly from the communities that often dispose of their household waste directly into the waterways. This has led to unacceptable levels of pharmaceuticals such as biphenyl-4-ylacetic acid (an anti-inflammatory), efavirenz (an HIV medicine), and carbamazepine (an epilepsy medicine) ending up in rivers.

To attempt to reclaim the quality of contaminated water, ongoing research in Prof Voua Otomo’s laboratory involves the use of ‘mycofiltration’, i.e., the use of fungal mycelia for the purpose of water filtration. This relatively untapped eco-friendly technology is attracting more attention, yet its real merits are only now being established and documented scientifically.

“Various species of fungi have been explored in bioremediation studies, and those belonging to the Pleurotus genus (edible mushrooms) have demonstrated an exceptional ability in the biosorption of contaminants,” says Prof Voua Otomo.

In his field of research, Prof Voua Otomo says snails can be used as bioindicators (i.e., organisms used to assess the health of an environment or ecosystem, particularly by indicating the presence and impact of pollutants or other environmental stressors) or biomonitors (i.e., organisms or a biological systems used to assess the health of an environment, particularly by detecting changes in the levels of pollutants or other harmful substances).

“We designed a mycofilter made of mycelia from the mushroom species Pleurotus ostreatus and filtrated water contaminated with the organic insecticide imidacloprid and the inorganic chemical iron (III). The results showed that mycofiltration could remove up to 94% of iron (III) and 31% of imidacloprid.

“Mycofiltration works through a process called adsorption, which is the process where molecules, ions, or particles from a gas, liquid, or dissolved solid, stick to a surface. This happens when the adsorbate (the substance being adsorbed) attaches to the adsorbent (the surface it adheres to),” Prof Voua Otomo explains.

Mycofiltration viable and affordable for water remediation

This research is the brainchild of Sanele Mnkandla, a final-year PhD student in Prof Voua Otomo’s laboratory. “A few years ago, she suggested looking at mycofiltration as a means to improve the quality of contaminated water. Freshwater snails were the most suitable organisms to help assess the improvement of the water quality after mycofiltration,” explains Prof Voua Otomo.

According to him, they are currently exploring ways to upscale the mycofilter to improve the quality of larger bodies of water, including rivers. The duration of the process depends on the size of the filter, the amount of water to be filtered and the targeted chemicals. Bigger filters, explains Prof Voua Otomo, will filter larger amounts of water over a relatively longer time whereas smaller ones will be saturated quickly. The process could last from minutes to days.

“We have published a technical note on the topic and a proof of concept. We are currently testing this technology using wastewater effluent in the Qwaqwa region. We are also exploring local applications in rainwater harvesting.

“Mycofiltration is certainly a viable and affordable option for water remediation, which can find a wide range of applications in South Africa,” he says. 

Watch the video below

News Archive

Campus-wide poll to determine preferences among current staff and students for language models
2015-10-28

New dates: Campus-wide poll to determine preferences among current staff and students for language models – 29 October to 4 November 2015


Due to the past week’s national #Feesmustfall student protest action, the language poll has been moved to 29 October 2015-4 November 2015 on all three campuses.

The poll will take place at the following venues from 29 October to 4 November 2015, 08:00-16:30, including the weekend:

Bloemfontein Campus:

Kestell Residence Gazellie
(Map from Main Gate to Kestell Residence: https://www.google.com/maps/d/edit?mid=zpxto53qbJos.kvfli1pCFvWQ&usp=sharing

Fish Tank, SRC Building, Thakaneng Bridge

(Map from Main Gate to the SRC Building: https://www.google.com/maps/d/viewer?mid=zpxto53qbJos.kJMo3STc445g)

Qwaqwa Campus:

VIP Lounge
(Map from the Main Gate to the VIP Lounge: https://www.google.com/maps/d/edit?mid=zpxto53qbJos.ka4YghcxZVxc&usp=sharing)

South Campus:

Conference Hall
(Map from the Main Gate to the Conference Hall:  https://www.google.com/maps/d/edit?mid=zpxto53qbJos.klMitM9RWCnA&usp=sharing)


Online option available:

Go to http://www.ufs.ac.za/language to participate. This URL will be active as from Thursday 29 October at 08:00. Staff to log in with their username and password and students to use their UFS credentials (your username is your student number and your password is the one you use to log in on Blackboard).

Please note that the campus-wide poll is NOT a formal voting process or referendum and will form only one part of many deciding factors that will be referred to the UFS Council on 4 December 2015 for their deliberations regarding the future of the language policy at the UFS. The poll, conducted by the Independent Electoral Commission (IEC), will be indicative of the preferences of staff and students for possible language model options, with specific focus on language of instruction.  

To take part in the polling at the allocated venues, a valid staff or student card must be produced. Polling will take place on the basis of one poll per current staff member/student.

We look forward to your participation in the poll and hereby thank the entire university community for their ongoing interest and responsible engagement with the review process.

For enquiries send an email to language@ufs.ac.za or call +27(0)51 401 3422.


Q & A:


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept