Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 August 2024 | Story André Damons | Photo Supplied
Prof Patricks Voua Otomo
Prof Patricks Voua Otomo, Associate Professor and subject head of Department of Zoology and Entomology at the University of the Free State (UFS).

In an effort to alleviate the burden of water contamination, Prof Patricks Voua Otomo, Associate Professor in the Department of Zoology and Entomology at the University of the Free (UFS) is researching how mushrooms can be used to significantly reduce the toxicity of water.

The degradation of river systems in South Africa has been linked primarily to the inability of municipalities to properly treat wastewater. According to the 2022 Green Drop Report, out of the existing 850 wastewater systems across 90 municipalities, only 23 (or less than 3%) qualified for the Green Drop Certification. This underscores the depth and breadth of the wastewater treatment crisis in South Africa and its potential implications for human and environmental health.

In 2030, billions of people will still lack access to safe water, sanitation and hygiene services – the most basic human need for health and well-being. Target 6.1 of the United Nations (UN) Sustainable Development Goals (SDGs) – SDG 6 – aims to achieve universal and equitable access to safe and affordable drinking water for all, while target 6.3 is also looking to improve water quality by reducing pollution, eliminating dumping and minimising release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe re-use globally by 2030.

These challenges inform Prof Voua Otomo’s research, which focuses on the drivers of river pollution in the Qwaqwa region, ways to mitigate/remediate their effects, and the development of simple and quick methods to assess water quality. His research, which is part of the UFS 2023 Impact Report, has drawn attention to localised incidences of terrestrial and aquatic contamination linked to sewage sludge management by local wastewater treatment plants.

Using mycofiltration to reclaim the quality of contaminated water

In Qwaqwa, wastewater treatment plants, however, are not the only source of river pollution, as a significant amount of river pollutants emanates directly from the communities that often dispose of their household waste directly into the waterways. This has led to unacceptable levels of pharmaceuticals such as biphenyl-4-ylacetic acid (an anti-inflammatory), efavirenz (an HIV medicine), and carbamazepine (an epilepsy medicine) ending up in rivers.

To attempt to reclaim the quality of contaminated water, ongoing research in Prof Voua Otomo’s laboratory involves the use of ‘mycofiltration’, i.e., the use of fungal mycelia for the purpose of water filtration. This relatively untapped eco-friendly technology is attracting more attention, yet its real merits are only now being established and documented scientifically.

“Various species of fungi have been explored in bioremediation studies, and those belonging to the Pleurotus genus (edible mushrooms) have demonstrated an exceptional ability in the biosorption of contaminants,” says Prof Voua Otomo.

In his field of research, Prof Voua Otomo says snails can be used as bioindicators (i.e., organisms used to assess the health of an environment or ecosystem, particularly by indicating the presence and impact of pollutants or other environmental stressors) or biomonitors (i.e., organisms or a biological systems used to assess the health of an environment, particularly by detecting changes in the levels of pollutants or other harmful substances).

“We designed a mycofilter made of mycelia from the mushroom species Pleurotus ostreatus and filtrated water contaminated with the organic insecticide imidacloprid and the inorganic chemical iron (III). The results showed that mycofiltration could remove up to 94% of iron (III) and 31% of imidacloprid.

“Mycofiltration works through a process called adsorption, which is the process where molecules, ions, or particles from a gas, liquid, or dissolved solid, stick to a surface. This happens when the adsorbate (the substance being adsorbed) attaches to the adsorbent (the surface it adheres to),” Prof Voua Otomo explains.

Mycofiltration viable and affordable for water remediation

This research is the brainchild of Sanele Mnkandla, a final-year PhD student in Prof Voua Otomo’s laboratory. “A few years ago, she suggested looking at mycofiltration as a means to improve the quality of contaminated water. Freshwater snails were the most suitable organisms to help assess the improvement of the water quality after mycofiltration,” explains Prof Voua Otomo.

According to him, they are currently exploring ways to upscale the mycofilter to improve the quality of larger bodies of water, including rivers. The duration of the process depends on the size of the filter, the amount of water to be filtered and the targeted chemicals. Bigger filters, explains Prof Voua Otomo, will filter larger amounts of water over a relatively longer time whereas smaller ones will be saturated quickly. The process could last from minutes to days.

“We have published a technical note on the topic and a proof of concept. We are currently testing this technology using wastewater effluent in the Qwaqwa region. We are also exploring local applications in rainwater harvesting.

“Mycofiltration is certainly a viable and affordable option for water remediation, which can find a wide range of applications in South Africa,” he says. 

Watch the video below

News Archive

Farmers need to plan grazing better, says UFS expert
2017-02-21

Description: Prof HO de Waal Tags: Prof HO de Waal

Prof HO de Waal, affiliated researcher
at the University of the Free State,
says farmers should save grazing
during the summer months to have
fodder available in the winter and
early spring.
Photo: Theuns Botha,
Landbouweekblad

“Farmers should save veld during the summer months to have grazing available for animals especially in the winter and early spring. Farmers should also adjust livestock numbers timely and wisely according to the available material in the field,” says Prof HO de Waal, professional animal scientist and affiliated researcher in the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State.

He offered this advice as a result of the sporadic and scattered (scant) rainfall of the past couple of summers. “In retrospect we know that this kind of precipitation started in about 2014 and has continued in subsequent summers. In February 2015, it was clear that a major fodder scarcity was developing.”

Existing research methods serve as source of current knowledge
Dr Herman Fouché (Agricultural Research Council) has conducted research on the impact of climate, especially rainfall, on the growth of grass. Sophisticated computer technology developed as far back as the 1980s to – through modelling – predicts the impact of climate on field production during the growing season.

The impact of climate, and more specifically rainfall, on field production has been known to animal and grazing scientists for a long time. Prof De Waal used the modelling results to determine the impact of rainfall on grass as a feeding source for animals.

“Information that emerged from this old research programme could therefore be applied directly to animal production,” says Prof De Waal.

Adjust livestock numbers to availability of grazing
In the summer rainfall areas of South Africa, grass usually grows from the end of August and early September. The growth process is dependent on the transfer of soil moisture, as well as on rainfall during the winter and early spring.

“Livestock numbers should be balanced throughout the year (according to the nutritional needs and production of the animals) with the availability of grazing material – be consistent, not only during certain seasons or when drought is imminent,” is Prof De Waal’s advice to farmers. “Farmers are also encouraged to carefully reduce the number of livestock on grazing and to rather focus their attention and limited resources on the remaining breeding herds (cows and ewes).”

“It is tragic, but unfortunately many farmers will not survive the effects of recent years. Similar climatic conditions will occur, with the same tragic consequences for man and beast. Better planning has to start now.” The assistance of private institutions, individuals, as well as the government, during the severe droughts is gratefully acknowledged.

Spineless cactus pear as solution for scarcity of animal feed
Prof De Waal says spineless cactus pears could be used as a feeding source during droughts. “The effects of a severe drought, or major animal-feed scarcity, are still prevalent in large parts of the subcontinent.” This may act as a catalyst to utilise spineless cactus pears as a feeding source and to be incorporated in the feed-flow programme for livestock on natural grazing.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept