Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 August 2024 | Story André Damons | Photo Supplied
Prof Patricks Voua Otomo
Prof Patricks Voua Otomo, Associate Professor and subject head of Department of Zoology and Entomology at the University of the Free State (UFS).

In an effort to alleviate the burden of water contamination, Prof Patricks Voua Otomo, Associate Professor in the Department of Zoology and Entomology at the University of the Free (UFS) is researching how mushrooms can be used to significantly reduce the toxicity of water.

The degradation of river systems in South Africa has been linked primarily to the inability of municipalities to properly treat wastewater. According to the 2022 Green Drop Report, out of the existing 850 wastewater systems across 90 municipalities, only 23 (or less than 3%) qualified for the Green Drop Certification. This underscores the depth and breadth of the wastewater treatment crisis in South Africa and its potential implications for human and environmental health.

In 2030, billions of people will still lack access to safe water, sanitation and hygiene services – the most basic human need for health and well-being. Target 6.1 of the United Nations (UN) Sustainable Development Goals (SDGs) – SDG 6 – aims to achieve universal and equitable access to safe and affordable drinking water for all, while target 6.3 is also looking to improve water quality by reducing pollution, eliminating dumping and minimising release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe re-use globally by 2030.

These challenges inform Prof Voua Otomo’s research, which focuses on the drivers of river pollution in the Qwaqwa region, ways to mitigate/remediate their effects, and the development of simple and quick methods to assess water quality. His research, which is part of the UFS 2023 Impact Report, has drawn attention to localised incidences of terrestrial and aquatic contamination linked to sewage sludge management by local wastewater treatment plants.

Using mycofiltration to reclaim the quality of contaminated water

In Qwaqwa, wastewater treatment plants, however, are not the only source of river pollution, as a significant amount of river pollutants emanates directly from the communities that often dispose of their household waste directly into the waterways. This has led to unacceptable levels of pharmaceuticals such as biphenyl-4-ylacetic acid (an anti-inflammatory), efavirenz (an HIV medicine), and carbamazepine (an epilepsy medicine) ending up in rivers.

To attempt to reclaim the quality of contaminated water, ongoing research in Prof Voua Otomo’s laboratory involves the use of ‘mycofiltration’, i.e., the use of fungal mycelia for the purpose of water filtration. This relatively untapped eco-friendly technology is attracting more attention, yet its real merits are only now being established and documented scientifically.

“Various species of fungi have been explored in bioremediation studies, and those belonging to the Pleurotus genus (edible mushrooms) have demonstrated an exceptional ability in the biosorption of contaminants,” says Prof Voua Otomo.

In his field of research, Prof Voua Otomo says snails can be used as bioindicators (i.e., organisms used to assess the health of an environment or ecosystem, particularly by indicating the presence and impact of pollutants or other environmental stressors) or biomonitors (i.e., organisms or a biological systems used to assess the health of an environment, particularly by detecting changes in the levels of pollutants or other harmful substances).

“We designed a mycofilter made of mycelia from the mushroom species Pleurotus ostreatus and filtrated water contaminated with the organic insecticide imidacloprid and the inorganic chemical iron (III). The results showed that mycofiltration could remove up to 94% of iron (III) and 31% of imidacloprid.

“Mycofiltration works through a process called adsorption, which is the process where molecules, ions, or particles from a gas, liquid, or dissolved solid, stick to a surface. This happens when the adsorbate (the substance being adsorbed) attaches to the adsorbent (the surface it adheres to),” Prof Voua Otomo explains.

Mycofiltration viable and affordable for water remediation

This research is the brainchild of Sanele Mnkandla, a final-year PhD student in Prof Voua Otomo’s laboratory. “A few years ago, she suggested looking at mycofiltration as a means to improve the quality of contaminated water. Freshwater snails were the most suitable organisms to help assess the improvement of the water quality after mycofiltration,” explains Prof Voua Otomo.

According to him, they are currently exploring ways to upscale the mycofilter to improve the quality of larger bodies of water, including rivers. The duration of the process depends on the size of the filter, the amount of water to be filtered and the targeted chemicals. Bigger filters, explains Prof Voua Otomo, will filter larger amounts of water over a relatively longer time whereas smaller ones will be saturated quickly. The process could last from minutes to days.

“We have published a technical note on the topic and a proof of concept. We are currently testing this technology using wastewater effluent in the Qwaqwa region. We are also exploring local applications in rainwater harvesting.

“Mycofiltration is certainly a viable and affordable option for water remediation, which can find a wide range of applications in South Africa,” he says. 

Watch the video below

News Archive

Space-based information plays vital role in disaster-risk reduction
2017-02-28

Africa is one of the continents most affected by disasters triggered by natural hazards. The result of climate change is a reality that affects every human being, whether it is extreme heat waves, cyclones, or the devastation of drought and floods. Climate change can provoke injuries or fatalities and affects the livelihoods of people in both rural communities and urban areas. It triggers damage and losses in various sectors of development, such as housing, road infrastructure, agriculture, health, education, telecommunications, energy, and affects routine economic processes leading to economic losses.

According to Dr Dumitru Dorin Prunariu, President of the Association of Space Explorers Europe, space programmes have become an important force defining challenges of the 21st century. “Space observation is essential for climate-change monitoring,” he said.

Dr Prunariu was the keynote speaker at a two-day symposium on climate resilience and water that was hosted by the Disaster Management Training and Education Centre for Africa (DiMTEC), at the University of the Free State (UFS). He participated in the Soviet Union’s Intercosmos programme and completed an eight day-mission on board Soyuz 40 and the Salyut 6 space laboratory, where he and fellow cosmonaut Leonid Popov completed scientific experiments in the fields of astrophysics, space radiation, space technology, space medicine, and biology. He is the 103rd human being to have travelled to outer space.

The focus of Dr Prunariu’s lecture was: Space activities in support of climate change mitigation and climate resilience.

Description: Dr Dumitriu Dorin Prunariu Tags: Dr Dumitriu Dorin Prunariu

Dr Dumitru Dorin Prunariu, the 103rd human
being in outer space and President of
the Association of Space Explorers Europe.
Photo: Charl Devenish

Space-based information, an extra eye that can detect a way out during disasters
“For governments to support communities affected by any disaster, precise and up-to-date information on its impacts is essential as a way to respond in a timely and effective way,” said Dr Prunariu.

Space-based information (derived using Earth observation, global navigation satellite systems, and satellite communications) can play a vital role in supporting disaster-risk reduction, response, and recovery efforts, by providing accurate and timely information to decision-makers.

“With space-based information, disaster management teams will be able to take note of recently established roads that may not appear in typical maps produced by National Geographic Institutes, but which could be used as emergency evacuation routes or as roads to deliver humanitarian assistance to those who require it in remote areas."

Space-based tools help decision-makers to improve planning
“Space-based tools and spatial data infrastructure is also crucial for policy planners and decision-makers in increasing the resilience of human settlements. Using geographic data and information collected before the occurrence of major disasters in combination with post-disaster data could yield important ideas for improved urban planning, especially in disaster-prone areas and highly-populated regions.

“In the recovery process, information on impact is used by governments to provide assistance to those affected, to plan the reconstruction process, and to restore the livelihoods of those affected,” said Dr Prunariu.

“Space observation is
essential for climate-
change monitoring.”

The symposium was attended by representatives from Liberia, Nigeria, Kenya, Ghana, Namibia, and Zimbabwe, with various international scientists from Europe imparting their expert knowledge on water and global resilience. The presence of these international experts strengthened global networks.

It isn't important in which sea or lake you observe a slick of pollution, or in the forests of which country a fire breaks out, or on which continent a hurricane arises, you are standing guard over the whole of our Earth. - Yuri Artyukhin: Soviet Russian cosmonaut and engineer who made a single flight into space.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept