Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 June 2024 | Story Martinette Brits | Photo Supplied
Arran Wood pictured with Prof Jan Smith
Arran Wood pictured with Prof Jan Smith, Senior Lecturer at the Department of Architecture, in front of his project.

A former Master’s student in Architecture at the University of the Free State (UFS) has recently been honoured with the esteemed Corobrik National Student Architecture Award. The 2023 grand prize was awarded to Arran Wood from UFS for his project "Spectral Flesh – Remembrance," which explores South Africa's forgotten nuclear history.

Corobrik’s vision for this competition is to provide up-and-coming architecture students a platform to showcase their architectural talent and creativity. The eight finalists were chosen by major South African universities, each selecting its best Master’s architectural student to participate in the awards.

The eight regional finalists had the opportunity to present their theses to an esteemed panel of judges, including Carin Smuts from CS Studio Architects, Somers Govender from Artek 4 Architects and Rudolf Roos from HDG Pretoria.

Unveiling forgotten conflict: Architecture as a mediator and reminder

Wood’s project delves into the role architecture can play as a mediator and reminder of forgotten conflicts. “The Angola-South African War left extensive scars and remains a raw place in the lives of many South Africans. Yet the memory and memorialisation of the conflict have become a shrouded spectre. One of the most obscured fallouts of the war was the fact that South Africa managed to construct nuclear weapons and became the first nation to decommission their nuclear arsenal voluntarily,” Wood explained.

The thesis proposes a theoretical foundry and “inverted monument” at the forgotten nuclear weapons development site at Pelindaba near Hartbeesport Dam. He chose this project due to his interest in the relationship between architecture and memory, particularly the memory of warfare. “I wanted to focus my research on something specific to South Africa. I settled on the Angola-South African War because its fallout is still a relevant struggle that many people deal with, yet it remains largely unspoken. This led me to discover how intimately the nuclear weapons programme was connected to the conflict,” Wood stated. 

Awards pave the way to success

Wood mentioned that he had known about the prestigious Corobrik Awards early in his studies but only realised later that one winner is chosen to represent the whole country. “Winning the national award still feels a bit unreal. From prior experience, I have seen how the award's prestige follows the winners long into their careers, standing as a significant achievement. It is a great honour to be considered one of these winners, and I am very grateful for the lasting recognition the award brings to my career.”

He credited the lecturers and staff at the Department of Architecture for their significant role in his success. “They taught me what I know, and it was most inspiring to see their passion for architecture. The support from the lecturers at this incredible department goes far beyond their job descriptions,” he remarked.

Wood also won the Dean’s Medal for the best results in the final-year Master’s class during the April graduation ceremonies of UFS. He is currently working for an architectural firm in Cape Town, named TwoFiveFive Architects

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept