Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 October 2024
iCAN Book Cover

The Centre for Teaching and Learning recently unveiled the fourth volume of the Initiative for African Narratives (iCAN), a vibrant celebration of diverse voices at the University of the Free State (UFS). This latest anthology features 48 stories presented in 10 of South Africa’s official languages: Afrikaans, English, isiNdebele, isiXhosa, isiZulu, Sesotho, Sepedi, siSwati, Tshivenda and Xitsonga. Contributors include Kovsie writers from all three UFS campuses, reflecting the university’s rich linguistic and cultural diversity.

“This initiative forms part of the university’s commitment to promoting multilingualism while providing a platform for a wide array of narratives,” said Dr Peet van Aardt, iCAN Coordinator. “Every student at the university has stories to tell – whether drawn from their personal experiences or shaped by their imagination.”

The launch, held on the Bloemfontein Campus, attracted around 150 students. Attendees were treated to musical performances by the Conlaures Choir, conducted by Omphemetse Phaswana, and a captivating saxophone solo by Thabo Dlamini from the Odeion School of Music. Representatives from the Academy for Multilingualism and African Languages Press were also present, underscoring the event’s focus on the intersection of language and expression.

This year's anthology, iCAN Vol. 4, is the ninth publication under the iCAN initiative in the past seven years. In addition to these collaborative anthologies, iCAN has also published several standalone works by solo student authors. Coordinated by senior student writer Siphila Dlamini, this volume showcases some of the finest writing talent across the UFS campuses.

Student of the year

Shortly after the iCAN launch, the Office of the Executive Dean of Student Affairs announced that Siphila Dlamini had been awarded the prestigious EDSA Student of the Year 2024 title. His contributions to student success and well-being were lauded as being aligned with the university’s strategic objectives.

Currently completing his Postgraduate Diploma in Governance and Political Transformation, Siphila plans to pursue a master’s degree next year. Reflecting on the award, he said, “This recognition, stemming from my work with iCAN, is a humbling reminder of the power of storytelling to transcend boundaries. It reaffirms my belief that by amplifying diverse voices and fostering creativity, we can spark change, inspire growth, and leave an indelible mark on our collective narrative.”

Siphila’s accolade marks the second consecutive win for an iCAN writer. Last year, the award was bestowed upon Tlotlisang David Mhlambiso from the Faculty of Education, further highlighting the initiative’s role in nurturing outstanding talent.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept