Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2024 | Story Lunga Luthuli | Photo Supplied
2024 - 2025 CSRC elections
The UFS’s recent pioneering of live election results during the 2024/2025 CSRC elections drove unprecedented student engagement.

The University of the Free State (UFS) has proven its commitment to innovation and student engagement with the recent 2024/2025 Campus Student Representative Council (CSRC) elections, which were held online and featured real-time results projection across all three campuses. The elections, held from 20 to 22 August 2024, marked a significant milestone for the institution, setting a precedent in the national higher education landscape.

Dr Grey Magaiza, Chairperson of the UFS Elections Logistics Committee (ELC), provided insight into the planning process that went into making the elections a success: “Planning for an institutional CSRC election is a very demanding process,” he explained. “Multiple stakeholders have to be appraised of the project, as it has multiple implications for the institution. The voting is the last phase in a long list of actions that a capable team must support.”

One of the most notable aspects of this year’s elections was the introduction of real-time results, a first for any institution in South Africa. Despite the challenges that came with being pioneers in this area, the ELC managed to overcome them through rigorous scenario planning and extensive negotiations. “This is a huge milestone, but it did not come without its own challenges,” Dr Magaiza said. “We had to engage in multiple negotiations with numerous process owners. The debates that ensued only sharpened our ability to observe potential blind spots.”

Students embrace live voting

The transition from traditional online voting to a system with live results was met with enthusiasm by the student body. “Students have always been for online elections. The majority of students we talked to loved the live results format,” Dr Magaiza said. The decision to share the live results link with the entire student body, despite initial requests for it to be limited to party agents, was particularly well-received, further enhancing transparency and engagement.

Security and accuracy were also top priorities for the ELC, with advanced IT processes in place to ensure a seamless voting experience. Each student was provided with a unique one-time PIN (OTP) sent to both their UFS email and cellphone, and the system was designed to cater to the specific needs of each campus.

The live results projection, which updated every five minutes, not only drove massive voter turnout across all campuses but also fostered a more dynamic and engaging election atmosphere. “The turnout was massive across all three campuses, surpassing the previous year’s figures,” Dr Magaiza said.

Reflecting on the success of the elections, Dr Magaiza emphasised the importance of collaboration and preparation. He also expressed confidence that the UFS model could serve as an example for other institutions in South Africa. “Live results enhance transparency and acceptance of the election results. As UFS, we have not had a single objection with regards to the first-past-the-post election results,” he concluded.

The 2024/2025 CSRC Elections at the UFS have not only set a new standard within the university, but have also highlighted the potential for innovation in student governance across the country.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept