Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2024 | Story Lunga Luthuli | Photo Supplied
2024 - 2025 CSRC elections
The UFS’s recent pioneering of live election results during the 2024/2025 CSRC elections drove unprecedented student engagement.

The University of the Free State (UFS) has proven its commitment to innovation and student engagement with the recent 2024/2025 Campus Student Representative Council (CSRC) elections, which were held online and featured real-time results projection across all three campuses. The elections, held from 20 to 22 August 2024, marked a significant milestone for the institution, setting a precedent in the national higher education landscape.

Dr Grey Magaiza, Chairperson of the UFS Elections Logistics Committee (ELC), provided insight into the planning process that went into making the elections a success: “Planning for an institutional CSRC election is a very demanding process,” he explained. “Multiple stakeholders have to be appraised of the project, as it has multiple implications for the institution. The voting is the last phase in a long list of actions that a capable team must support.”

One of the most notable aspects of this year’s elections was the introduction of real-time results, a first for any institution in South Africa. Despite the challenges that came with being pioneers in this area, the ELC managed to overcome them through rigorous scenario planning and extensive negotiations. “This is a huge milestone, but it did not come without its own challenges,” Dr Magaiza said. “We had to engage in multiple negotiations with numerous process owners. The debates that ensued only sharpened our ability to observe potential blind spots.”

Students embrace live voting

The transition from traditional online voting to a system with live results was met with enthusiasm by the student body. “Students have always been for online elections. The majority of students we talked to loved the live results format,” Dr Magaiza said. The decision to share the live results link with the entire student body, despite initial requests for it to be limited to party agents, was particularly well-received, further enhancing transparency and engagement.

Security and accuracy were also top priorities for the ELC, with advanced IT processes in place to ensure a seamless voting experience. Each student was provided with a unique one-time PIN (OTP) sent to both their UFS email and cellphone, and the system was designed to cater to the specific needs of each campus.

The live results projection, which updated every five minutes, not only drove massive voter turnout across all campuses but also fostered a more dynamic and engaging election atmosphere. “The turnout was massive across all three campuses, surpassing the previous year’s figures,” Dr Magaiza said.

Reflecting on the success of the elections, Dr Magaiza emphasised the importance of collaboration and preparation. He also expressed confidence that the UFS model could serve as an example for other institutions in South Africa. “Live results enhance transparency and acceptance of the election results. As UFS, we have not had a single objection with regards to the first-past-the-post election results,” he concluded.

The 2024/2025 CSRC Elections at the UFS have not only set a new standard within the university, but have also highlighted the potential for innovation in student governance across the country.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept