Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

UFS and Mexico forge links
2006-03-30

Some of the guests attending the signing of the memorandum of agreement were in front from the left Prof Wijnand Swart (Chairperson: Centre for Plant Health Management at the UFS), His Excellency Mauricio de Maria y Campos (Ambassador of Mexico in Southern Africa), Prof Magda Fourie (Vice-Rector: Academic Planning at the UFS) and Dr José Sergio Barrales Domínguez (Rector of the University of Chapingo in Mexico).
Photo: Stephen Collett

UFS and Mexico forge links
The Centre for Plant Health Management (CePHMa) in the Department of Plant Sciences at the University of the Free State (UFS) is presenting its first international conference.  The conference started yesterday and will run until tomorrow (Friday 31 March 2006) on the Main Campus in Bloemfontein. 

The conference is the first on cactus pear (or prickly pear) in South Africa since 1995.  It coincides with 2006 being declared as International Year of Deserts and Desertification by the United Nations General Assembly. 

During the opening session of the conference yesterday a memorandum of understanding (MOU) was signed between CePHMa and the University of Chapingo (Universidad Autonoma Chapingo) in Mexico.  The signing ceremony was attended by the Ambassador of Mexico in Southern Africa, His Excellency Mauricio de Maria y Campos, the Rector of the University of Chapingo, Dr José Sergio Barrales Domínguez, and the Vice-Rector: Academic Planning of the UFS, Prof Magda Fourie, amongst other important dignitaries. 

“South Africa and Mexico have a lot in common where agricultural practices in semi-arid areas and the role of the cactus pear are concerned,” said Prof Wijnand Swart, Chairperson of CePHMa at the opening of the conference.

He said that the MOU is the result of negotiations between CePHMa and the Ambassador of Mexico in Southern Africa over the past 12 months.

“The MOU facilitates the negotiation of international cooperative academic initiatives between the two institutions.  This entails the exchange of students and staff members of the UFS, curriculum development, research and community service,” said Prof Swart.

“During the next two days, various areas of interest will be discussed.  This includes perspectives from commercial cactus pear farmers in South Africa, the health management of cactus pear orchards, selection of new cultivars of cactus pear, and the nutritional and medicinal value of the crop,” said Prof Swart.

In his welcoming message Prof Swart explained that in recent years there has been increased interest in the cactus pear for the important role it can play in sustainable agricultural systems in marginal areas of the world.  These plants have developed phenological and physiological adaptations to sustain their development in adverse environments. 

“The cactus pear can serve as a life saving crop to both humans and animals living in marginal regions by providing a highly digestible source of energy, water, minerals and protein,” said Prof Swart. 

“In an age when global warming and its negative impact on earth’s climate has become an everyday subject of discussion, the exploitation of salt and drought tolerant crops will undoubtedly have many socio-economic benefits to communities inhabiting semi-arid regions,” said Prof Swart.

“Plantations of cactus pear grown for fruit, forage and vegetable production, as well as for natural red dye produced from the cactus scale insect known as cochineal have, over the last two decades, been established in many countries in South America, Europe, Asia and Africa.  The crop and its products have not only become important in international markets, but also in local markets across the globe,” said Prof Swart. 

Detailed discussions on the implementation of the MOU will take place between CePHMa and the University of Chapingo after the conference. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
30 March 2006

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept