Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 August 2025 | Story Onthatile Tikoe | Photo Tshepo Tsotetsi
New Coach
Coach Mokete Tsotetsi (left) is warmly welcomed by Jerry Laka (right), Director of KovsieSport, following his appointment as the new Head Coach of the KovsieFootball men’s team at the University of the Free State.

The University of the Free State (UFS) is proud to announce the appointment of Coach Mokete Tsotetsi as the new Head Coach of the KovsieFootball men’s team. With this significant appointment, the UFS marks the beginning of an exciting chapter in its football programme under the leadership of a seasoned professional with deep roots in South African football.

Coach Tsotetsi, a former South African international defender, brings with him not only a decorated playing history, including stints with Jomo Cosmos, Kaizer Chiefs, and Bloemfontein Celtic, but also a wealth of experience in developing athletes into disciplined, high-performing individuals. Known during his playing days as a hard-working and hard-tackling defender, Coach Tsotetsi is no stranger to commitment and excellence – qualities that strongly align with the values of the UFS.

“We are thrilled to welcome Coach Mokete Tsotetsi as the new Head Coach of KovsieFootball,” says Jerry Laka, Director of KovsieSport. “Coach Tsotetsi brings a wealth of experience, passion, and leadership to our football programme, and we are excited about the future under his guidance.”

More than just a coach, Coach Tsotetsi is recognised as a mentor and leader who sees sport as a vehicle for holistic student development. His appointment signals the UFS’ intent to elevate the performance and culture of KovsieFootball, both on and off the field.

“This is a new era for our football programme,” continues Laka. “We believe that Coach Mokete will bring a winning mentality and a positive culture to our team. We are confident that he will inspire our players to achieve great things. A good coach will make his players see what they can be rather than what they are.”

Although Coach Tsotetsi and his team are under pressure with the tournament fast approaching, he assures the UFS community that he will not bring one-dimensional football, but tactical and entertaining football.

The UFS community is encouraged to extend a warm Kovsie welcome to Coach Tsotetsi as he embarks on this journey. With the tournament commencing tomorrow, 7 August 2025, we encourage you to stay informed about the team's upcoming fixtures. Their opening match will be against UP-Tuks Men's Football at 19:15, followed by a second fixture against UJ Men's Football on 14 August 2025.

To stay updated on their full schedule, please click here.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept