Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Botma Visser
Prof Botma Visser delivered his inaugural lecture at the University of the Free State, highlighting nearly two decades of research on wheat rust and global food security.

Safeguarding one of the world’s most vital staple foods was at the heart of the inaugural lecture delivered by Prof Botma Visser, Professor in the Department of Plant Sciences at the University of the Free State (UFS), on Wednesday 3 September 2025. Prof Visser shared insights from nearly two decades of research into wheat rust – a devastating crop disease that threatens both South Africa’s harvests and global food security.

“Wheat production in South Africa is threatened by three fungal pathogens that cause rust disease on the crop. Understanding the factors that contribute to virulence on locally grown cultivars is crucial to ensure continued wheat production,” said Prof Visser.

 

The fight against evolving wheat rusts

For the past 17 years, Prof Visser’s research has focused on the genetic structure of rust populations and the risks they pose to food security. His work has shown that these populations are dynamic and constantly changing due to genetic mutations within existing races, as well as the introduction of new races into South Africa.

“Computer modelling showed that rust can spread over vast distances by prevailing winds. During the 20th Century, at least four Southern African stem rust races managed to move across the Indian Ocean from Southern Africa to Australia. South Africa, in turn, received multiple new races from mid-Africa across Zambia and Zimbabwe, without any means of stopping these introductions,” he explained.

To respond to this challenge, his team recently implemented MARPLE (Mobile And Real-time Plant disEase) diagnostics using fourth-generation nanopore sequencing technology. This approach allows the rapid characterisation of fungal isolates, specifically targeting genes linked to fungicide resistance and virulence.

“This work,” Prof Visser noted, “is part of an effort to safeguard global wheat production.”

His research is a collaborative effort with Prof Willem Boshoff (Department of Plant Sciences, UFS) and Dr Tarekegn Terefe (Agricultural Research Council – Small Grain, Bethlehem). Together, their work has positioned the UFS as an internationally recognised centre of excellence in wheat rust research.

 

About Prof Botma Visser

Prof Botma Visser obtained his BSc in Botany and Microbiology (1988), BSc Honours in Microbiology (1989), and MSc in Botany (1993) at the University of the Free State, where he also completed his PhD in Botany in 2004.

His career spans more than 18 years of research into wheat rust pathogens, combining annual surveys, race pathotyping, molecular genetics, and cutting-edge sequencing technologies. His expertise has not only advanced understanding of rust population dynamics in South Africa but also contributed to global collaborative studies on crop disease.

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept