Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2025 | Story Sandile Ndlovu | Photo Supplied
Sandile Ndlovu
Sandile Ndlovu, Assistant Researcher in the UFS Interdisciplinary Centre for Digital Futures.

By Sandile Ndlovu, Assistant Researcher in the Interdisciplinary Centre for Digital Futures at the University of the Free State.

 


 

When I bought my laptop in my first year of university, it was fast, reliable, and felt like an investment that would last. But when I reached the third and final year of my undergraduate studies, it was a completely different story as my trusted laptop took ages to boot up, the battery barely lasted an hour, and performing simple tasks felt like a test of patience. It’s as if my laptop knew graduation was near and had decided to retire early. As I found myself at a university that relies heavily on the use of electronic products, I couldn’t help but wonder: what happens to all our obsolete electronic devices? Early last year, I came across a statistic that left me stunned: South Africa's formal recycling efforts only recover between 7% and 12% of its total electronic waste output. The rest is either stored indefinitely, dumped in landfills, or handled by informal recyclers under hazardous conditions.

Electronic waste, also known as e-waste, refers to discarded electrical and electronic equipment (EEE) and is the fastest-growing waste stream in the world. Between 2019 and 2022, the amount of e-waste generated increased by approximately 15,67%, growing from 53,6 million tonnes to 62 million tonnes. According to the Recycling of Waste and Scrap in South Africa 2023 report, e-waste is growing three times faster in South Africa than solid municipal waste. But why is this happening? Is it “just the way it is”, or is there something bigger going on? As a sociologist, I was immediately interested in understanding why e-waste is the fastest-growing waste stream. Are we buying too many electronic products indiscriminately, or is there more to the story?

One major driver of excessive e-waste generation is rooted in the capitalistic notion of “planned obsolescence”, which is the practice which sees manufacturers design products with short lifespans (in terms of functionality, necessity, as well as desirability) – in order to apply pressure on consumers to replace electronic devices frequently and arbitrarily. Despite this systematic issue with electronic products, a recent study of Gen Z (born 1997–2012) and Millennial (born 1981–1996) consumers revealed that 60% of adults don’t know what e-waste is, and 57% didn’t realise e-waste poses a threat to the environment and human health. This lack of awareness is concerning, as it may contribute to the discarding of e-waste in regular waste bins, with these products ultimately ending up in ordinary landfills, which could cause environmental problems such as atmospheric pollution through CO2 emission and ecological imbalance – all of which could seriously jeopardise environmental and human health and safety.

 

Challenges surrounding South Africa's e-waste management

While e-waste proliferation is not a uniquely South African problem, in the South African context, underdeveloped collection mechanisms and consumer hoarding within the broader e-waste management system do seem to prevent or deter effective recycling efforts, at least for those in underserviced provinces. For example, South Africa's E-waste Recycling Authority's (ERA) interactive recycling map only shows one Waste Electrical Electronic Equipment and Lighting (WEEE-L) drop-off site for the Free State and none for the Northern Cape. Consumers, including students, faced with limited options to properly dispose of their e-waste, often hoard their obsolete devices. This trend was highlighted in the findings of a recent ERA information campaign, which saw 164 tonnes of e-waste donated by 135 000 people in just two days. These challenges highlight the urgent need for better e-waste infrastructure, and the untapped potential of public engagement in e-waste collection initiatives. The question now is how can institutions of higher learning and the students studying at these institutions play a role in dismantling the barriers to e-waste management and drive meaningful change?

 

Institutions of higher learning as mediators in the e-waste management system

Institutions of higher learning are spaces where education, technological development, critical thinking, and environmental stewardship ideally converge. These are spaces in which we should question and dissect global consumer patterns brought about by unfettered capitalism, solely focused on the accumulation of profit and often to the detriment of environmental as well as social consequences. Also, by collaborating with electronic product manufacturers and recyclers to establish extended producer responsibility (EPR) initiatives, institutions could restructure the e-waste management network, developing sustainable practices and raising critical awareness. 

 

Universities can lead the charge in changing habits 

South Africa's e-waste management system requires a coordinated effort to establish permanent e-waste disposal points across all South African institutions of higher learning. This approach would not only improve the currently underdeveloped e-waste collection mechanism but also enable these institutions and students to manage their e-waste effectively. 

Given the vast number of electronic devices on campuses, which are indispensable “tools of the trade”, institutions of higher learning have the potential to significantly contribute to the amount of e-waste recovered in South Africa. Moreover, if these institutions normalise responsible e-waste disposal practices within their campuses, they can produce graduates who carry these environmentally conscious practices into their careers and daily lives. 

The challenge presented by the e-waste crisis is complex, but it also offers a transformative opportunity. The question is: Will stakeholders at institutions of higher learning, especially students, step up and become key mediators in the fight against e-waste? Is there enough urgency to convince our national institutions of higher learning of the manifold academic but also socio-environmental potential to start engaging responsibly and intellectually with this looming and complex crisis?

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept