Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2025 | Story Sandile Ndlovu | Photo Supplied
Sandile Ndlovu
Sandile Ndlovu, Assistant Researcher in the UFS Interdisciplinary Centre for Digital Futures.

By Sandile Ndlovu, Assistant Researcher in the Interdisciplinary Centre for Digital Futures at the University of the Free State.

 


 

When I bought my laptop in my first year of university, it was fast, reliable, and felt like an investment that would last. But when I reached the third and final year of my undergraduate studies, it was a completely different story as my trusted laptop took ages to boot up, the battery barely lasted an hour, and performing simple tasks felt like a test of patience. It’s as if my laptop knew graduation was near and had decided to retire early. As I found myself at a university that relies heavily on the use of electronic products, I couldn’t help but wonder: what happens to all our obsolete electronic devices? Early last year, I came across a statistic that left me stunned: South Africa's formal recycling efforts only recover between 7% and 12% of its total electronic waste output. The rest is either stored indefinitely, dumped in landfills, or handled by informal recyclers under hazardous conditions.

Electronic waste, also known as e-waste, refers to discarded electrical and electronic equipment (EEE) and is the fastest-growing waste stream in the world. Between 2019 and 2022, the amount of e-waste generated increased by approximately 15,67%, growing from 53,6 million tonnes to 62 million tonnes. According to the Recycling of Waste and Scrap in South Africa 2023 report, e-waste is growing three times faster in South Africa than solid municipal waste. But why is this happening? Is it “just the way it is”, or is there something bigger going on? As a sociologist, I was immediately interested in understanding why e-waste is the fastest-growing waste stream. Are we buying too many electronic products indiscriminately, or is there more to the story?

One major driver of excessive e-waste generation is rooted in the capitalistic notion of “planned obsolescence”, which is the practice which sees manufacturers design products with short lifespans (in terms of functionality, necessity, as well as desirability) – in order to apply pressure on consumers to replace electronic devices frequently and arbitrarily. Despite this systematic issue with electronic products, a recent study of Gen Z (born 1997–2012) and Millennial (born 1981–1996) consumers revealed that 60% of adults don’t know what e-waste is, and 57% didn’t realise e-waste poses a threat to the environment and human health. This lack of awareness is concerning, as it may contribute to the discarding of e-waste in regular waste bins, with these products ultimately ending up in ordinary landfills, which could cause environmental problems such as atmospheric pollution through CO2 emission and ecological imbalance – all of which could seriously jeopardise environmental and human health and safety.

 

Challenges surrounding South Africa's e-waste management

While e-waste proliferation is not a uniquely South African problem, in the South African context, underdeveloped collection mechanisms and consumer hoarding within the broader e-waste management system do seem to prevent or deter effective recycling efforts, at least for those in underserviced provinces. For example, South Africa's E-waste Recycling Authority's (ERA) interactive recycling map only shows one Waste Electrical Electronic Equipment and Lighting (WEEE-L) drop-off site for the Free State and none for the Northern Cape. Consumers, including students, faced with limited options to properly dispose of their e-waste, often hoard their obsolete devices. This trend was highlighted in the findings of a recent ERA information campaign, which saw 164 tonnes of e-waste donated by 135 000 people in just two days. These challenges highlight the urgent need for better e-waste infrastructure, and the untapped potential of public engagement in e-waste collection initiatives. The question now is how can institutions of higher learning and the students studying at these institutions play a role in dismantling the barriers to e-waste management and drive meaningful change?

 

Institutions of higher learning as mediators in the e-waste management system

Institutions of higher learning are spaces where education, technological development, critical thinking, and environmental stewardship ideally converge. These are spaces in which we should question and dissect global consumer patterns brought about by unfettered capitalism, solely focused on the accumulation of profit and often to the detriment of environmental as well as social consequences. Also, by collaborating with electronic product manufacturers and recyclers to establish extended producer responsibility (EPR) initiatives, institutions could restructure the e-waste management network, developing sustainable practices and raising critical awareness. 

 

Universities can lead the charge in changing habits 

South Africa's e-waste management system requires a coordinated effort to establish permanent e-waste disposal points across all South African institutions of higher learning. This approach would not only improve the currently underdeveloped e-waste collection mechanism but also enable these institutions and students to manage their e-waste effectively. 

Given the vast number of electronic devices on campuses, which are indispensable “tools of the trade”, institutions of higher learning have the potential to significantly contribute to the amount of e-waste recovered in South Africa. Moreover, if these institutions normalise responsible e-waste disposal practices within their campuses, they can produce graduates who carry these environmentally conscious practices into their careers and daily lives. 

The challenge presented by the e-waste crisis is complex, but it also offers a transformative opportunity. The question is: Will stakeholders at institutions of higher learning, especially students, step up and become key mediators in the fight against e-waste? Is there enough urgency to convince our national institutions of higher learning of the manifold academic but also socio-environmental potential to start engaging responsibly and intellectually with this looming and complex crisis?

News Archive

Research into veld fires in grassland can now help with scientifically-grounded evidence
2015-04-10

While cattle and game farmers are rejoicing in the recent rains which large areas of the country received in the past growing season, an expert from the University of the Free State’s Department of Animal, Wildlife, and Grassland Sciences, says that much of the highly inflammable material now available could lead to large-scale veld fires this coming winter.

Prof Hennie Snyman, professor and  researcher in the Department of Animal, Wildlife, and Grassland Sciences, warns that cattle and game farmers should be aware, in good time, of this problem which is about to rear its head. He proposes that farmers must burn firebreaks as a precaution.

At present, Prof Snyman focuses his research on the impact of fire and burning on the functioning of the grassland ecosystem, especially in the drier grassland regions.

He says the impact of fire on the functioning of ecosystems in the ‘sour’ grassland areas of Southern Africa (which includes Kwazulu-Natal, Limpopo, Mpumalanga, the Eastern Cape, and the Harrismith environs) is already well established, but less information  is available for ‘sweet’ semi-arid grassland areas. According to Prof Snyman, there is no reason to burn grassland in this semi-arid area. Grazing by animals can be effectively used because of the high quality material without having to burn it off. In the sourer pasturage, fire may well form part of the functioning of the grassland ecosystem in view of the fact that a quality problem might develop after which the grass must rejuvenate by letting it burn.

Prof Snyman, who has already been busy with the research for ten years, says quantified data on the impact of fire on the soil and plants were not available previously for the semi-arid grassland areas. Fires start frequently because of lightning, carelessness, freak accidents, or damaged power lines, and farmers must be recompensed for this damage.

The shortage of proper research on the impact of fires on soil and plants has led to burnt areas not being withdrawn from grazing for long enough. The lack of information has also led to farmers, who have lost grazing to fires, not being compensated fairly or even being over-compensated.

“When above-and below-ground plant production, together with efficient water usage, is taken into account, burnt grassland requires at least two full growing seasons to recover completely.”       

Prof Snyman says farmers frequently make the mistake of allowing animals to graze on burnt grassland as soon as it begins to sprout, causing considerable damage to the plants.

“Plant roots are more sensitive to fire than the above-ground plant material. This is the reason why seasonal above-ground production losses from fire in the first growing season after the fire can amount to half of the unburnt veld. The ecosystem must first recover completely in order to be productive and sustainable again for the long term. The faster burnt veld is grazed again, the longer the ecosystem takes to recover completely, lengthening the problem with fodder shortages further.  

Prof Snyman feels that fire as a management tool in semi-arid grassland is questionable if there is no specific purpose for it, as it can increase ecological and financial risk management in the short term.

Prof Snyman says more research is needed to quantify the impact of runaway fires on both grassland plant productivity and soil properties in terms of different seasonal climatic variations.

“The current information may already serve as valuable guidelines regarding claims arising from unforeseen fires, which often amount to thousands of rand, and are sometimes based on unscientific evidence.”

Prof Snyman’s research findings have been used successfully as guidelines for compensation aspects in several court cases.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept