Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2025 | Story Sandile Ndlovu | Photo Supplied
Sandile Ndlovu
Sandile Ndlovu, Assistant Researcher in the UFS Interdisciplinary Centre for Digital Futures.

By Sandile Ndlovu, Assistant Researcher in the Interdisciplinary Centre for Digital Futures at the University of the Free State.

 


 

When I bought my laptop in my first year of university, it was fast, reliable, and felt like an investment that would last. But when I reached the third and final year of my undergraduate studies, it was a completely different story as my trusted laptop took ages to boot up, the battery barely lasted an hour, and performing simple tasks felt like a test of patience. It’s as if my laptop knew graduation was near and had decided to retire early. As I found myself at a university that relies heavily on the use of electronic products, I couldn’t help but wonder: what happens to all our obsolete electronic devices? Early last year, I came across a statistic that left me stunned: South Africa's formal recycling efforts only recover between 7% and 12% of its total electronic waste output. The rest is either stored indefinitely, dumped in landfills, or handled by informal recyclers under hazardous conditions.

Electronic waste, also known as e-waste, refers to discarded electrical and electronic equipment (EEE) and is the fastest-growing waste stream in the world. Between 2019 and 2022, the amount of e-waste generated increased by approximately 15,67%, growing from 53,6 million tonnes to 62 million tonnes. According to the Recycling of Waste and Scrap in South Africa 2023 report, e-waste is growing three times faster in South Africa than solid municipal waste. But why is this happening? Is it “just the way it is”, or is there something bigger going on? As a sociologist, I was immediately interested in understanding why e-waste is the fastest-growing waste stream. Are we buying too many electronic products indiscriminately, or is there more to the story?

One major driver of excessive e-waste generation is rooted in the capitalistic notion of “planned obsolescence”, which is the practice which sees manufacturers design products with short lifespans (in terms of functionality, necessity, as well as desirability) – in order to apply pressure on consumers to replace electronic devices frequently and arbitrarily. Despite this systematic issue with electronic products, a recent study of Gen Z (born 1997–2012) and Millennial (born 1981–1996) consumers revealed that 60% of adults don’t know what e-waste is, and 57% didn’t realise e-waste poses a threat to the environment and human health. This lack of awareness is concerning, as it may contribute to the discarding of e-waste in regular waste bins, with these products ultimately ending up in ordinary landfills, which could cause environmental problems such as atmospheric pollution through CO2 emission and ecological imbalance – all of which could seriously jeopardise environmental and human health and safety.

 

Challenges surrounding South Africa's e-waste management

While e-waste proliferation is not a uniquely South African problem, in the South African context, underdeveloped collection mechanisms and consumer hoarding within the broader e-waste management system do seem to prevent or deter effective recycling efforts, at least for those in underserviced provinces. For example, South Africa's E-waste Recycling Authority's (ERA) interactive recycling map only shows one Waste Electrical Electronic Equipment and Lighting (WEEE-L) drop-off site for the Free State and none for the Northern Cape. Consumers, including students, faced with limited options to properly dispose of their e-waste, often hoard their obsolete devices. This trend was highlighted in the findings of a recent ERA information campaign, which saw 164 tonnes of e-waste donated by 135 000 people in just two days. These challenges highlight the urgent need for better e-waste infrastructure, and the untapped potential of public engagement in e-waste collection initiatives. The question now is how can institutions of higher learning and the students studying at these institutions play a role in dismantling the barriers to e-waste management and drive meaningful change?

 

Institutions of higher learning as mediators in the e-waste management system

Institutions of higher learning are spaces where education, technological development, critical thinking, and environmental stewardship ideally converge. These are spaces in which we should question and dissect global consumer patterns brought about by unfettered capitalism, solely focused on the accumulation of profit and often to the detriment of environmental as well as social consequences. Also, by collaborating with electronic product manufacturers and recyclers to establish extended producer responsibility (EPR) initiatives, institutions could restructure the e-waste management network, developing sustainable practices and raising critical awareness. 

 

Universities can lead the charge in changing habits 

South Africa's e-waste management system requires a coordinated effort to establish permanent e-waste disposal points across all South African institutions of higher learning. This approach would not only improve the currently underdeveloped e-waste collection mechanism but also enable these institutions and students to manage their e-waste effectively. 

Given the vast number of electronic devices on campuses, which are indispensable “tools of the trade”, institutions of higher learning have the potential to significantly contribute to the amount of e-waste recovered in South Africa. Moreover, if these institutions normalise responsible e-waste disposal practices within their campuses, they can produce graduates who carry these environmentally conscious practices into their careers and daily lives. 

The challenge presented by the e-waste crisis is complex, but it also offers a transformative opportunity. The question is: Will stakeholders at institutions of higher learning, especially students, step up and become key mediators in the fight against e-waste? Is there enough urgency to convince our national institutions of higher learning of the manifold academic but also socio-environmental potential to start engaging responsibly and intellectually with this looming and complex crisis?

News Archive

UFS cardiologists and surgeons give children a beating heart
2015-04-23

Photo: René-Jean van der Berg

A team from the University of the Free State School for Medicine work daily unremittingly to save the lives of young children who have been born with heart defects by carrying out highly specialised interventions and operations on them. These operations, which are nowadays performed more and more frequently by cardiologists from the UFS School of Medicine, place the UFS on a similar footing to world-class cardiology and cardio-thoracic units.

One of the children is seven-month-old Montsheng Ketso who recently underwent a major heart operation to keep the left ventricle of her heart going artificially.

Montsheng was born with a rare, serious defect of the coronary artery, preventing the left ventricle from receiving enough blood to pump to the rest of the body.

This means that the heart muscle can suffer damage because these children essentially experience a heart attack at a very young age.

In a healthy heart, the left ventricle receives oxygenated blood from the left atrium. Then the left ventricle pumps this oxygen-rich blood to the aorta whence it flows to the rest of the body. The heart muscle normally receives blood supply from the oxygenated aorta blood, which in this case cannot happen.

Photo: René-Jean van der Berg

“She was very ill. I thought my baby was going to die,” says Mrs Bonizele Ketso, Montsheng’s mother.

She says that Montsheng became sick early in February, and she thought initially it was a tight chest or a cold. After a doctor examined and treated her baby, Montsheng still remained constantly ill, so the doctor referred her to Prof Stephen Brown, paediatric cardiologist at the UFS and attached to Universitas Hospital.

Here, Prof Brown immediately got his skilled team together as quickly as possible to diagnose the condition in order to operate on Montsheng.

During the operation, the blood flow was restored, but since Montsheng’s heart muscle was seriously damaged, the heart was unable to contract at the end of the operation. Then she was coupled to a heart-lung machine to allow the heart to rest and give the heart muscle chance to recover. The entire team of technologists and the dedicated anaesthetist, Dr Edwin Turton, kept a vigil day and night for several days.

Prof Francis Smit, chief specialist at the UFS Department of Cardiothoracic Surgery, explains that without this operation Montsheng would not have been able to celebrate her first birthday.

“After the surgery, these children can reach adulthood without further operations. Within two to three months after the operation, she will have a normal active life, although for about six months she will still use medication. Thereafter, she will be tiptop and shortly learn to crawl and walk.”

Mrs Ketso is looking forward enormously to seeing her daughter stand up and take her first steps. A dream which she thought would never come true.    

“Write there that I really love these doctors.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept