Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2025 | Story Sandile Ndlovu | Photo Supplied
Sandile Ndlovu
Sandile Ndlovu, Assistant Researcher in the UFS Interdisciplinary Centre for Digital Futures.

By Sandile Ndlovu, Assistant Researcher in the Interdisciplinary Centre for Digital Futures at the University of the Free State.

 


 

When I bought my laptop in my first year of university, it was fast, reliable, and felt like an investment that would last. But when I reached the third and final year of my undergraduate studies, it was a completely different story as my trusted laptop took ages to boot up, the battery barely lasted an hour, and performing simple tasks felt like a test of patience. It’s as if my laptop knew graduation was near and had decided to retire early. As I found myself at a university that relies heavily on the use of electronic products, I couldn’t help but wonder: what happens to all our obsolete electronic devices? Early last year, I came across a statistic that left me stunned: South Africa's formal recycling efforts only recover between 7% and 12% of its total electronic waste output. The rest is either stored indefinitely, dumped in landfills, or handled by informal recyclers under hazardous conditions.

Electronic waste, also known as e-waste, refers to discarded electrical and electronic equipment (EEE) and is the fastest-growing waste stream in the world. Between 2019 and 2022, the amount of e-waste generated increased by approximately 15,67%, growing from 53,6 million tonnes to 62 million tonnes. According to the Recycling of Waste and Scrap in South Africa 2023 report, e-waste is growing three times faster in South Africa than solid municipal waste. But why is this happening? Is it “just the way it is”, or is there something bigger going on? As a sociologist, I was immediately interested in understanding why e-waste is the fastest-growing waste stream. Are we buying too many electronic products indiscriminately, or is there more to the story?

One major driver of excessive e-waste generation is rooted in the capitalistic notion of “planned obsolescence”, which is the practice which sees manufacturers design products with short lifespans (in terms of functionality, necessity, as well as desirability) – in order to apply pressure on consumers to replace electronic devices frequently and arbitrarily. Despite this systematic issue with electronic products, a recent study of Gen Z (born 1997–2012) and Millennial (born 1981–1996) consumers revealed that 60% of adults don’t know what e-waste is, and 57% didn’t realise e-waste poses a threat to the environment and human health. This lack of awareness is concerning, as it may contribute to the discarding of e-waste in regular waste bins, with these products ultimately ending up in ordinary landfills, which could cause environmental problems such as atmospheric pollution through CO2 emission and ecological imbalance – all of which could seriously jeopardise environmental and human health and safety.

 

Challenges surrounding South Africa's e-waste management

While e-waste proliferation is not a uniquely South African problem, in the South African context, underdeveloped collection mechanisms and consumer hoarding within the broader e-waste management system do seem to prevent or deter effective recycling efforts, at least for those in underserviced provinces. For example, South Africa's E-waste Recycling Authority's (ERA) interactive recycling map only shows one Waste Electrical Electronic Equipment and Lighting (WEEE-L) drop-off site for the Free State and none for the Northern Cape. Consumers, including students, faced with limited options to properly dispose of their e-waste, often hoard their obsolete devices. This trend was highlighted in the findings of a recent ERA information campaign, which saw 164 tonnes of e-waste donated by 135 000 people in just two days. These challenges highlight the urgent need for better e-waste infrastructure, and the untapped potential of public engagement in e-waste collection initiatives. The question now is how can institutions of higher learning and the students studying at these institutions play a role in dismantling the barriers to e-waste management and drive meaningful change?

 

Institutions of higher learning as mediators in the e-waste management system

Institutions of higher learning are spaces where education, technological development, critical thinking, and environmental stewardship ideally converge. These are spaces in which we should question and dissect global consumer patterns brought about by unfettered capitalism, solely focused on the accumulation of profit and often to the detriment of environmental as well as social consequences. Also, by collaborating with electronic product manufacturers and recyclers to establish extended producer responsibility (EPR) initiatives, institutions could restructure the e-waste management network, developing sustainable practices and raising critical awareness. 

 

Universities can lead the charge in changing habits 

South Africa's e-waste management system requires a coordinated effort to establish permanent e-waste disposal points across all South African institutions of higher learning. This approach would not only improve the currently underdeveloped e-waste collection mechanism but also enable these institutions and students to manage their e-waste effectively. 

Given the vast number of electronic devices on campuses, which are indispensable “tools of the trade”, institutions of higher learning have the potential to significantly contribute to the amount of e-waste recovered in South Africa. Moreover, if these institutions normalise responsible e-waste disposal practices within their campuses, they can produce graduates who carry these environmentally conscious practices into their careers and daily lives. 

The challenge presented by the e-waste crisis is complex, but it also offers a transformative opportunity. The question is: Will stakeholders at institutions of higher learning, especially students, step up and become key mediators in the fight against e-waste? Is there enough urgency to convince our national institutions of higher learning of the manifold academic but also socio-environmental potential to start engaging responsibly and intellectually with this looming and complex crisis?

News Archive

UFS keeps the power on
2015-06-24

 

At a recent Emergency Power Indaba held on the Bloemfontein Campus, support structures at the university met to discuss the Business Continuity Intervention Plan to manage load shedding on the three campuses of the UFS.

Currently, 35 generators serving 55 of the buildings have already been installed as a back-up power supply on the three campuses of the university. According to Anton Calitz, Electrical Engineer at the UFS, the running cost to produce a kWh of electricity with a diesel generator amounts to approximately three times the cost at which the UFS buys electricity from Centlec.

Planned additional generators will attract in excess of R4 million in operating costs per year. For 2015, the UFS senior leadership approved R11 million, spread over the three campuses. Remaining requirements will be spread out over the next three years. University Estates is also looking at renewable energy sources.

On the Bloemfontein Campus, 26 generators serving forty-one buildings are in operation. On South Campus, two generators were installed at the new Education Building and at the ICT Server Room. Lecture halls, the Arena, the Administration Building, and the library will be added later in 2015. Eight generators serving 12 buildings are in operation on the Qwaqwa Campus. In 2015, the Humanities Building, Lecture Halls and the heat pump room will also be equipped with generators.

Most buildings will be supplied only with partial emergency power. In rare cases, entire buildings will be supplied because the cost of connecting is lower than re-wiring for partial demand. According to Nico Janse van Rensburg, Senior Director at University Estates, emergency power will be limited to lighting and power points only. No allowances will be made for air-conditioning.

“Most area lighting will also be connected to emergency power,” he said.

Where spare capacity is available on existing emergency power generators, requests received for additional connections will be added, where possible, within the guidelines. The following spaces will receive preference:
- Lecture halls with the lights, data projectors, and computers running
- Laboratories for practical academic work and sensitive research projects
- Academic research equipment that is sensitive to interruptions
- Buildings hosting regular events

According to Janse van Rensburg, all further needs will be investigated. Staff can forward all emergency power supply needs to Anton Calitz at calitzja@ufs.ac.za

Staff and students can also manage load shedding in the following ways:

1. Carry a small torch with you at all times, in case you are on a stairwell or other dark area when the lights go out. You can also use the flashlight app on your phone. Download it before any load shedding occurs. This can come in handy if the lights go out suddenly, and you cannot find a flashlight. Load-shedding after dark imposes even more pressure on our Campus Security staff. We can assist them with our vigilance and preparedness by carrying portable lights with us at all times and by assisting colleagues.
2. Candles pose a serious safety risk. Rather use battery- or solar-powered lights during load shedding.
3. Ensure that your vehicle always has fuel in the tank, because petrol stations cannot pump fuel during power outages.
4. Ensure that you have enough cash, because ATMs cannot operate without electricity.
5. The UFS Sasol Library has study venues available which students can use during load shedding.
6. When arranging events which are highly dependent on power supply, especially at night, organisers should consult the load-shedding schedule before determining dates and preferably also make back-up arrangements. If generators are a necessity, the financial impact should be taken into consideration.

The senior leadership also approved a list of buildings to be equipped with emergency power supplies.

More about load shedding at the UFS:
Getting out of the dark
More information, guidelines and contact information

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept