Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
25 July 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Plant Sciences Congress
At a public seminar, Understanding human evolution through the study of past environments in the Free State, presented by the UFS Department of Plant Sciences, were, from the left, front: Kristen Wroth, Britt Bousman; back: Prof Louis Scott, mentor in the UFS Department of Plant Sciences, and Michael Toffolo.

Florisbad, a thermal spring situated 45 km northwest of Bloemfontein on the edge of a large dry saltpan, is a well-known fossil site that used to be a large lake where giant buffalo, blue wildebeest, and hippos roamed thousands of years ago. Today, this fossil-bearing spring is not only a tourist attraction and a venue for weddings, but also an established quaternary research station that has attracted several palaeo-scientists since the 1930s, following the discovery of a remarkable human cranium and other fauna. 

Studies of past environments 

Three international researchers studying different aspects of archaeology at this and other sites in the Free State, recently presented lectures at the UFS to a multidisciplinary group of academics in plant sciences, geology, geography, and environmental management.

These lectures are part of the ongoing collaboration regarding fossil plant (pollen), fauna, and archaeological studies between the University of the Free State (UFS), the National Museum, and universities abroad.

Florisbad, a key site for understanding the appearance of modern environments as well as modern humans in Southern Africa, is the focus of the investigations of all three visiting scientists, aiming to provide a better understanding of past Free State environments where human evolution has taken place.

Michael Toffolo, a junior research chair from the University of Bordeaux Montaigne in France, focuses on the reconstruction of site-formation processes, palaeo-environments, and ancient human activities based on the study of the micro-morphology of archaeological deposits. He has been working in Southern Africa since 2013. The title of his lecture was: Reconstructing Pleistocene environments in the Free State by looking at the microscopic sedimentary record. 

Fluoride-preserved bones

Florisbad is widely known for the discovery of an archaic modern human skull of c. 260 000 years old. According to Toffolo, the human probably died, and the remains was left at the spring by the hyenas. The bones consequently absorbed fluoride from the spring water, which counteracted decomposition and helped to preserve it. 

Britt Bousman talked about middle and late Pleistocene terraces and archaeology in the Modder River Valley. He has worked in Southern Africa for the past 43 years and started his collaboration with researchers from the UFS and the National Museum in 1985. They have worked together at several sites, investigating palaeo-environments. Bousman teaches Archaeology in the Department of Anthropology at the Texas State University. 

While most scientists study early human records in rock shelters, especially those near the coast where seafood was harvested by prehistoric people, he is one of only a few researchers who studies the evolution of early human behaviour in central South Africa in the context of their activities in the open environment. 

“Rock shelters are good spaces for human behaviour,” says Bousman. He believes, however, that the Modder River area is a better space to study how humans have survived on the land under changing climatic conditions in the long term; for example, how they hunted and slaughtered animals. This can be seen from the many artefacts they left, such as spearheads, scrapers, etc. Interesting animal remains were also found, such as the bones of an extinct giant zebra at the Erfkroon site along the Modder River, with a head measuring 63 cm compared to that of a current zebra, which measures 54 cm. The only complete horn core of an extinct giant wildebeest was also found at the site. 

The first chemists

According to Bousman, technology changed in the Stone Age and included the production of more grinding stones, indicating that humans collected plants and grinded them. Observations of modern plant-collecting activities suggested that not many plant foods needed grinding. Bousman proposes that different plant components may have been grinded for medicinal mixtures, therefore these ancestors may have assumed the role of chemists. 

Kristen Wroth, a postdoctoral researcher in the Geoarchaeology Working Group at the University of Tübingen, Germany, presented a lecture on early human-environment interactions and ancient pyro technology. She uses a suite of micro-archaeological techniques such as phytolith (microscopic plant silica) analysis, micromorphology, and FTIR to understand both human and Neanderthal behaviour and to reconstruct how local environments have changed in space and through time.


News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept