Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
25 July 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Plant Sciences Congress
At a public seminar, Understanding human evolution through the study of past environments in the Free State, presented by the UFS Department of Plant Sciences, were, from the left, front: Kristen Wroth, Britt Bousman; back: Prof Louis Scott, mentor in the UFS Department of Plant Sciences, and Michael Toffolo.

Florisbad, a thermal spring situated 45 km northwest of Bloemfontein on the edge of a large dry saltpan, is a well-known fossil site that used to be a large lake where giant buffalo, blue wildebeest, and hippos roamed thousands of years ago. Today, this fossil-bearing spring is not only a tourist attraction and a venue for weddings, but also an established quaternary research station that has attracted several palaeo-scientists since the 1930s, following the discovery of a remarkable human cranium and other fauna. 

Studies of past environments 

Three international researchers studying different aspects of archaeology at this and other sites in the Free State, recently presented lectures at the UFS to a multidisciplinary group of academics in plant sciences, geology, geography, and environmental management.

These lectures are part of the ongoing collaboration regarding fossil plant (pollen), fauna, and archaeological studies between the University of the Free State (UFS), the National Museum, and universities abroad.

Florisbad, a key site for understanding the appearance of modern environments as well as modern humans in Southern Africa, is the focus of the investigations of all three visiting scientists, aiming to provide a better understanding of past Free State environments where human evolution has taken place.

Michael Toffolo, a junior research chair from the University of Bordeaux Montaigne in France, focuses on the reconstruction of site-formation processes, palaeo-environments, and ancient human activities based on the study of the micro-morphology of archaeological deposits. He has been working in Southern Africa since 2013. The title of his lecture was: Reconstructing Pleistocene environments in the Free State by looking at the microscopic sedimentary record. 

Fluoride-preserved bones

Florisbad is widely known for the discovery of an archaic modern human skull of c. 260 000 years old. According to Toffolo, the human probably died, and the remains was left at the spring by the hyenas. The bones consequently absorbed fluoride from the spring water, which counteracted decomposition and helped to preserve it. 

Britt Bousman talked about middle and late Pleistocene terraces and archaeology in the Modder River Valley. He has worked in Southern Africa for the past 43 years and started his collaboration with researchers from the UFS and the National Museum in 1985. They have worked together at several sites, investigating palaeo-environments. Bousman teaches Archaeology in the Department of Anthropology at the Texas State University. 

While most scientists study early human records in rock shelters, especially those near the coast where seafood was harvested by prehistoric people, he is one of only a few researchers who studies the evolution of early human behaviour in central South Africa in the context of their activities in the open environment. 

“Rock shelters are good spaces for human behaviour,” says Bousman. He believes, however, that the Modder River area is a better space to study how humans have survived on the land under changing climatic conditions in the long term; for example, how they hunted and slaughtered animals. This can be seen from the many artefacts they left, such as spearheads, scrapers, etc. Interesting animal remains were also found, such as the bones of an extinct giant zebra at the Erfkroon site along the Modder River, with a head measuring 63 cm compared to that of a current zebra, which measures 54 cm. The only complete horn core of an extinct giant wildebeest was also found at the site. 

The first chemists

According to Bousman, technology changed in the Stone Age and included the production of more grinding stones, indicating that humans collected plants and grinded them. Observations of modern plant-collecting activities suggested that not many plant foods needed grinding. Bousman proposes that different plant components may have been grinded for medicinal mixtures, therefore these ancestors may have assumed the role of chemists. 

Kristen Wroth, a postdoctoral researcher in the Geoarchaeology Working Group at the University of Tübingen, Germany, presented a lecture on early human-environment interactions and ancient pyro technology. She uses a suite of micro-archaeological techniques such as phytolith (microscopic plant silica) analysis, micromorphology, and FTIR to understand both human and Neanderthal behaviour and to reconstruct how local environments have changed in space and through time.


News Archive

UFS boasts with world class research apparatus
2005-10-20

 

 

At the launch of the diffractometer were from the left Prof Steve Basson (Chairperson:  Department of Chemistry at the UFS), Prof Jannie Swarts (Unit for Physical and Macro-molecular Chemistry at the UFS Department of Chemistry), Mr Pari Antalis (from the provider of the apparatus - Bruker SA), Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS), Prof André Roodt (head of the X-ray diffraction unit at the UFS Department of Chemistry) and Prof Teuns Verschoor (Vice-Rector:  Academic Operations at the UFS).

UFS boasts with world class research apparatus
The most advanced single crystal X-ray diffractometer in Africa has been installed in the Department of Chemistry at the University of the Free State (UFS).

“The diffractometer provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, currently synthesized in the Department of Chemistry.  It also includes the area of homogeneous catalysis where new compounds for industrial application are synthesised and characterised and whereby SASOL and even the international petrochemical industry could benefit, especially in the current climate of increased oil prices,” said Prof Andrè Roodt, head of the X-ray diffraction unit at the UFS Department of Chemistry.

The installation of the Bruker Kappa APEX II single crystal diffractometer is part of an innovative programme of the UFS management to continue its competitive research and extend it further internationally.

“The diffractometer is the first milestone of the research funding programme for the Department of Chemistry and we are proud to be the first university in Africa to boast with such advanced apparatus.  We are not standing back for any other university in the world and have already received requests for research agreements from universities such as the University of Cape Town,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the UFS.

The diffractometer is capable of accurately analysing molecules in crystalline form within a few hours and obtain the precise geometry – that on a sample only the size of a grain of sugar.   It simultaneously gives the exact distance between two atoms, accurate to less than fractions of a billionth of a millimetre.

“It allows us to investigate certain processes in Bloemfontein which has been impossible in the past. We now have a technique locally by which different steps in key chemical reactions can be evaluated much more reliable, even at temperatures as low as minus 170 degrees centigrade,” said Prof Roodt.

A few years ago these analyses would have taken days or even weeks. The Department of Chemistry now has the capability to investigate chemical compounds in Bloemfontein which previously had to be shipped to other, less sophisticate sites in the RSA or overseas (for example Sweden, Russia and Canada) at significant extra costs.

Media release
Issued by:Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
19 October 2005   

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept