Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

UFS cardiologists and surgeons give children a beating heart
2015-04-23

Photo: René-Jean van der Berg

A team from the University of the Free State School for Medicine work daily unremittingly to save the lives of young children who have been born with heart defects by carrying out highly specialised interventions and operations on them. These operations, which are nowadays performed more and more frequently by cardiologists from the UFS School of Medicine, place the UFS on a similar footing to world-class cardiology and cardio-thoracic units.

One of the children is seven-month-old Montsheng Ketso who recently underwent a major heart operation to keep the left ventricle of her heart going artificially.

Montsheng was born with a rare, serious defect of the coronary artery, preventing the left ventricle from receiving enough blood to pump to the rest of the body.

This means that the heart muscle can suffer damage because these children essentially experience a heart attack at a very young age.

In a healthy heart, the left ventricle receives oxygenated blood from the left atrium. Then the left ventricle pumps this oxygen-rich blood to the aorta whence it flows to the rest of the body. The heart muscle normally receives blood supply from the oxygenated aorta blood, which in this case cannot happen.

Photo: René-Jean van der Berg

“She was very ill. I thought my baby was going to die,” says Mrs Bonizele Ketso, Montsheng’s mother.

She says that Montsheng became sick early in February, and she thought initially it was a tight chest or a cold. After a doctor examined and treated her baby, Montsheng still remained constantly ill, so the doctor referred her to Prof Stephen Brown, paediatric cardiologist at the UFS and attached to Universitas Hospital.

Here, Prof Brown immediately got his skilled team together as quickly as possible to diagnose the condition in order to operate on Montsheng.

During the operation, the blood flow was restored, but since Montsheng’s heart muscle was seriously damaged, the heart was unable to contract at the end of the operation. Then she was coupled to a heart-lung machine to allow the heart to rest and give the heart muscle chance to recover. The entire team of technologists and the dedicated anaesthetist, Dr Edwin Turton, kept a vigil day and night for several days.

Prof Francis Smit, chief specialist at the UFS Department of Cardiothoracic Surgery, explains that without this operation Montsheng would not have been able to celebrate her first birthday.

“After the surgery, these children can reach adulthood without further operations. Within two to three months after the operation, she will have a normal active life, although for about six months she will still use medication. Thereafter, she will be tiptop and shortly learn to crawl and walk.”

Mrs Ketso is looking forward enormously to seeing her daughter stand up and take her first steps. A dream which she thought would never come true.    

“Write there that I really love these doctors.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept