Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

Moving towards creating a more accessible UFS for mobility-impaired students
2015-07-21


Centre for Universal Access and Disability Support’s logo for persons with mobility impairments.
Design: Karoo Republic


Hi, my name is Jackson, and I am a wheelchair user following an accident that left me paralysed.

We often take for granted the ability to navigate obstacles, and to move readily from place to place. Few people have to worry about mobility on campus, but for students with mobility impairments, it presents many challenges that few of us are aware of.

 

The biggest struggle for students with mobility impairments is often encountered in the lecture room/hall. Once they arrive at the class (often struggling to get there on time), their next challenge might be entering the classroom and finding a suitable place where they can sit comfortably. As it is, there are only a few loose tables in most lecture halls. Consequently, the students have to sit through the lecture taking notes and working with their laptops resting on their laps. Obviously, this is uncomfortable and not conducive to their learning process.

 

When students have limited hand function, the result is that they write more slowly and with difficulty. However, the UFS does offer assistance from scribes, adapted computer hardware/software, assistive devices, and/or modified furniture. Such adaptations can be arranged by the Centre for Universal Access and Disability Support (CUADS), which boasts an official test and examination venue where students with mobility impairments can proceed with their tests and exams if they prefer.

 

Students with Cerebral Palsy may experience difficulties with quick, sudden physical movements, and delayed processing of information. Stressful circumstances can result in their experiencing difficulty when having to write or process information quickly enough during test and examination situations. The Extra Time Panel, in collaboration with Student Counselling and Development, determines the time concession for those students with mobility impairments who have such needs.  

 

The importance of accessible parking spaces exclusively designated for wheelchair users not only involves such places being closer to a building entrance but also wide enough for a wheelchair user to get in and out of a vehicle safely.

?

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept