Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2018 Photo Supplied
Pretzel-formed fossil of great evolutionary interest
Slab with holotype of Parapsammichnites pretzelifornic from the Urusis Formation, Namibia. Scale bar is 1cm.Picture was taken from Buatois et al., 2018.

The acclaimed scientific journal, Nature, recently published an article about a trace fossil in approximately 543-million-year-old rocks, which elucidates the evolution of the first animals that appeared on Earth and lived in the sea.  

Affiliated Professor in the Department of Geology at the University of the Free State (UFS) Prof Gerard Germs formed part of a team that conducted research with the aim of understanding how the evolution of the first multicellular animals came about and how the Cambrian explosion took place. Prof Germs is of great value to the team for his extended field geological knowledge.

An article which he co-authored was published in the Nature Scientific Reports. The title of the article is: “Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion”. The international group of writers included authors from Canada, Spain and South Africa. 

Occurrence of the Cambrian explosion
Prof Germs explains the Cambrian explosion: “During the long (4.5-billion-year) history of the Earth, the first life originated and subsequently evolution of plants and animals took place from one-cellular organisms to multicellular vertebrate animals and seed plants. Approximately 573 million years ago the first multicellular animals appeared on the scene. Sometime afterwards, approximately 540 million years ago, a kind of explosion in the origin of many new animal species occurred. This explosion is known as the Cambrian explosion.”

The team studied Earth sediments which are somewhat older than the Cambrian explosion. Such sediments are approximately 573 to 541 million years old and form part of the Ediacaran (late Neoproterozoic) period.

“My discoveries of the past, of among others, the oldest animal with a carbonate skeleton (Cloudina) and of complex horizontal Cambrian-type “worm” tracks (treptichnids) in Ediacaran sediments of Namibia have demonstrated that the Cambrian explosion occurred more gradually than previously thought. This has recently been confirmed in the article that was published in the Nature Scientific Reports.”

Pretzeliformis bulldoze to search for food
According to the article there is evidence that   during the Ediacaran period   worm-like animals such as the Parasammichnites pretzeliformis were already so far developed that they, due to coelom development and size increase, for the first time in the history of the Earth, were able to disturb and bulldoze sediments.  In this way they were able to find a new food source in sea sediments. Bulldozing animals were previously thought to have originated only during and after the Cambrian explosion and not during the older Ediacaran.

“Another major aim of my cooperative research is to improve our knowledge of the geology of the Ediacaran to early Cambrian of South Africa and Namibia. We also intend to establish how the assembly of the supercontinent Gondwana took place. This improved knowledge can be of great future economic interest since large oil, gas and limestone sources occur in Ediacaran-age sediments outside South Africa”.

News Archive

Visiting UK professor presents research project at CRHED
2017-04-12

Description: ' AM Bathmaker CRHED  Tags: AM Bathmaker CRHED

Prof Ann-Marie Bathmaker, University of Birmingham,
during her presentation at the UFS.

Photo: Eugene Seegers

Paired Peers: Pathways to social mobility—Investing in the future? Moving through HE and into employment was recently presented to staff and postdoctoral students by Prof Ann-Marie Bathmaker, from the University of Birmingham, during her visit to South Africa while working on the Miratho Research Project with CRHED. Prof Bathmaker’s research interest particularly focuses on issues of equity, social mobility, and social class inequalities. Her presentation, the second in the Higher Education Research Seminar series presented by CRHED, was based on research resulting from a seven-year project in England.

In the UK, higher education (HE) is considered a key route to social mobility. Interest has grown in graduate destinations, particularly the prospects and obstacles faced by graduates from different social backgrounds. Paired Peers followed 70 students throughout their undergraduate studies and into the working world.

The project explored the processes of social mobility, highlighting different orientations and practices towards investing in the future, which ranged from investing in the present to cultural entrepreneurship for the future.

Participants were selected from two universities in Bristol, England. The research team focused on three key themes: “Getting In” (access to HE), “Getting On” (financial limitations, friendships, accommodation), and “Getting Out” (holiday work, internships, and finding suitable graduate employment).

Prof Bathmaker was able to highlight key research findings, many of which resonated with those attending. From the question-and-answer session, it was clear that many issues regarding inclusivity, whether across gender, ethnic, or language barriers, find their parallels in the South African context and can be of benefit to higher education practitioners here.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept