Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2018 Photo Supplied
Pretzel-formed fossil of great evolutionary interest
Slab with holotype of Parapsammichnites pretzelifornic from the Urusis Formation, Namibia. Scale bar is 1cm.Picture was taken from Buatois et al., 2018.

The acclaimed scientific journal, Nature, recently published an article about a trace fossil in approximately 543-million-year-old rocks, which elucidates the evolution of the first animals that appeared on Earth and lived in the sea.  

Affiliated Professor in the Department of Geology at the University of the Free State (UFS) Prof Gerard Germs formed part of a team that conducted research with the aim of understanding how the evolution of the first multicellular animals came about and how the Cambrian explosion took place. Prof Germs is of great value to the team for his extended field geological knowledge.

An article which he co-authored was published in the Nature Scientific Reports. The title of the article is: “Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion”. The international group of writers included authors from Canada, Spain and South Africa. 

Occurrence of the Cambrian explosion
Prof Germs explains the Cambrian explosion: “During the long (4.5-billion-year) history of the Earth, the first life originated and subsequently evolution of plants and animals took place from one-cellular organisms to multicellular vertebrate animals and seed plants. Approximately 573 million years ago the first multicellular animals appeared on the scene. Sometime afterwards, approximately 540 million years ago, a kind of explosion in the origin of many new animal species occurred. This explosion is known as the Cambrian explosion.”

The team studied Earth sediments which are somewhat older than the Cambrian explosion. Such sediments are approximately 573 to 541 million years old and form part of the Ediacaran (late Neoproterozoic) period.

“My discoveries of the past, of among others, the oldest animal with a carbonate skeleton (Cloudina) and of complex horizontal Cambrian-type “worm” tracks (treptichnids) in Ediacaran sediments of Namibia have demonstrated that the Cambrian explosion occurred more gradually than previously thought. This has recently been confirmed in the article that was published in the Nature Scientific Reports.”

Pretzeliformis bulldoze to search for food
According to the article there is evidence that   during the Ediacaran period   worm-like animals such as the Parasammichnites pretzeliformis were already so far developed that they, due to coelom development and size increase, for the first time in the history of the Earth, were able to disturb and bulldoze sediments.  In this way they were able to find a new food source in sea sediments. Bulldozing animals were previously thought to have originated only during and after the Cambrian explosion and not during the older Ediacaran.

“Another major aim of my cooperative research is to improve our knowledge of the geology of the Ediacaran to early Cambrian of South Africa and Namibia. We also intend to establish how the assembly of the supercontinent Gondwana took place. This improved knowledge can be of great future economic interest since large oil, gas and limestone sources occur in Ediacaran-age sediments outside South Africa”.

News Archive

Her mission: Looking for viruses
2017-10-03

Description: Burt readmore Tags: Prof Felicity Burt, Felicity Burt, inaugural lecture, medical virology, UFS Faculty of Health Sciences, arboviruses 

Prof Felicity Burt delivering her inaugural lecture,
Catching a Virus
Photo: Stephen Collett

“Preparing and presenting an inaugural lecture is an opportunity to look back at one’s career and to enjoy previous highlights and achievements; to share these, not only with colleagues, but also with family and friends.”

This is according to Prof Felicity Burt, who recently presented her inaugural lecture, Catching a Virus. Prof Burt is a professor in medical virology in the Faculty of Health Sciences at the University of the Free State (UFS). It may sound ominous, but it is a story about identifying viruses, and finding and stopping them in their tracks in nature.

Research focus on arbo- and zoonotic viruses 
“My research focuses on arboviruses and zoonotic viruses,” said Prof Burt. “Arboviruses are viruses that are transmitted by insect vectors, such as mosquitoes, ticks, midges or sandflies, whereas zoonotic viruses are naturally transmitted from animals to humans. However, there is a considerable overlap between these two groups.” The research looks at host responses, virus discovery and surveillance in order to identify which of the viruses in circulation have the potential to cause human diseases.

“Emerging and re-emerging viruses have significant implications for public health,” said Prof Burt at the start of her lecture. She also stated that there have been disease outbreaks of unprecedented magnitude, which have spread and established in distinct geographic regions. “Many of these emerging viruses are transmitted by vectors or are spread to humans from animals. These viruses can cause significant diseases in humans,” said Prof Burt. 

There are many reasons why these viruses re-emerge, such as global warming, human invasion in forested areas, changes in agricultural practices, international travel, as well as the illegal movement of animals. Prof Burt used the Zika virus as an example of a recent emerging virus. 

More than 20 years’ experience 

With more than 20 years’ experience and a PhD in medical virology from the University of the Witwatersrand, Prof Burt is a renowned specialist. She has worked in the Special Pathogens Unit at the National Institute for Communicable Diseases, and was a member of various teams responding to outbreaks of Ebola and Rift Valley fever in Africa and Saudi Arabia, respectively. She is co-author of more than 51 articles in international scientific journals, as well as six chapters on arboviruses. In 2016, she was awarded a SARChl research chair by the South African Research Chair Initiative for her research on vector-borne and zoonotic diseases.

Click here to read the full lecture.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept