Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2018 Photo Supplied
Pretzel-formed fossil of great evolutionary interest
Slab with holotype of Parapsammichnites pretzelifornic from the Urusis Formation, Namibia. Scale bar is 1cm.Picture was taken from Buatois et al., 2018.

The acclaimed scientific journal, Nature, recently published an article about a trace fossil in approximately 543-million-year-old rocks, which elucidates the evolution of the first animals that appeared on Earth and lived in the sea.  

Affiliated Professor in the Department of Geology at the University of the Free State (UFS) Prof Gerard Germs formed part of a team that conducted research with the aim of understanding how the evolution of the first multicellular animals came about and how the Cambrian explosion took place. Prof Germs is of great value to the team for his extended field geological knowledge.

An article which he co-authored was published in the Nature Scientific Reports. The title of the article is: “Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion”. The international group of writers included authors from Canada, Spain and South Africa. 

Occurrence of the Cambrian explosion
Prof Germs explains the Cambrian explosion: “During the long (4.5-billion-year) history of the Earth, the first life originated and subsequently evolution of plants and animals took place from one-cellular organisms to multicellular vertebrate animals and seed plants. Approximately 573 million years ago the first multicellular animals appeared on the scene. Sometime afterwards, approximately 540 million years ago, a kind of explosion in the origin of many new animal species occurred. This explosion is known as the Cambrian explosion.”

The team studied Earth sediments which are somewhat older than the Cambrian explosion. Such sediments are approximately 573 to 541 million years old and form part of the Ediacaran (late Neoproterozoic) period.

“My discoveries of the past, of among others, the oldest animal with a carbonate skeleton (Cloudina) and of complex horizontal Cambrian-type “worm” tracks (treptichnids) in Ediacaran sediments of Namibia have demonstrated that the Cambrian explosion occurred more gradually than previously thought. This has recently been confirmed in the article that was published in the Nature Scientific Reports.”

Pretzeliformis bulldoze to search for food
According to the article there is evidence that   during the Ediacaran period   worm-like animals such as the Parasammichnites pretzeliformis were already so far developed that they, due to coelom development and size increase, for the first time in the history of the Earth, were able to disturb and bulldoze sediments.  In this way they were able to find a new food source in sea sediments. Bulldozing animals were previously thought to have originated only during and after the Cambrian explosion and not during the older Ediacaran.

“Another major aim of my cooperative research is to improve our knowledge of the geology of the Ediacaran to early Cambrian of South Africa and Namibia. We also intend to establish how the assembly of the supercontinent Gondwana took place. This improved knowledge can be of great future economic interest since large oil, gas and limestone sources occur in Ediacaran-age sediments outside South Africa”.

News Archive

Music lecturer’s innovative app is a first in South Africa
2014-07-24

Dr Frelét de Villiers, lecturer at the Odeion School of Music (OSM) at the University of the Free State (UFS), is in the process of developing an innovative interactive mobile music application – Notes&Fun.

Notes&Fun is being designed to assist aspirant pianists. It will support beginners with notation and rhythmic patterns.

The app will display single notes, phrases or rhythmical patterns on the phone or tablet and then apply the built-in microphone to measure the frequency of the notes played on the piano itself. It will indicate whether you’ve played correctly, or if you have made a mistake, the correct note will be displayed. Notes&Fun consists of multiple levels, each with a practise and test mode that gradually increases in difficulty and complexity. As opposed to existing apps, Notes&Fun is conceptualised with immediate pitch detection and is applied with a real (acoustic) piano.

For the pilot phase of this initiative, the developing company Maxxor in Cape Town will create a demo app which can be downloaded for testing purposes and general feedback. Once the developing company and innovator are satisfied with the first phase, the product will be marketed vigorously on social media. The initial app will be free, but subsequent levels will need to be purchased. The developers will start a Facebook page where users of the app can add their latest scores and compete with other users. Initially the app will only be available on the Google Play Store due to the fact that more people own Android devices than Apple products. Once the product has proven to be financially viable, the developers will adapt it for the Mac App Store as well.

“The beauty of this app is that music has a universal language, so it can be marketed internationally and I am privileged to have the institutional support from the UFS Technology Unit regarding the judicial process and developing process of the product,” Dr De Villiers said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept