Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2018 Photo Supplied
Pretzel-formed fossil of great evolutionary interest
Slab with holotype of Parapsammichnites pretzelifornic from the Urusis Formation, Namibia. Scale bar is 1cm.Picture was taken from Buatois et al., 2018.

The acclaimed scientific journal, Nature, recently published an article about a trace fossil in approximately 543-million-year-old rocks, which elucidates the evolution of the first animals that appeared on Earth and lived in the sea.  

Affiliated Professor in the Department of Geology at the University of the Free State (UFS) Prof Gerard Germs formed part of a team that conducted research with the aim of understanding how the evolution of the first multicellular animals came about and how the Cambrian explosion took place. Prof Germs is of great value to the team for his extended field geological knowledge.

An article which he co-authored was published in the Nature Scientific Reports. The title of the article is: “Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion”. The international group of writers included authors from Canada, Spain and South Africa. 

Occurrence of the Cambrian explosion
Prof Germs explains the Cambrian explosion: “During the long (4.5-billion-year) history of the Earth, the first life originated and subsequently evolution of plants and animals took place from one-cellular organisms to multicellular vertebrate animals and seed plants. Approximately 573 million years ago the first multicellular animals appeared on the scene. Sometime afterwards, approximately 540 million years ago, a kind of explosion in the origin of many new animal species occurred. This explosion is known as the Cambrian explosion.”

The team studied Earth sediments which are somewhat older than the Cambrian explosion. Such sediments are approximately 573 to 541 million years old and form part of the Ediacaran (late Neoproterozoic) period.

“My discoveries of the past, of among others, the oldest animal with a carbonate skeleton (Cloudina) and of complex horizontal Cambrian-type “worm” tracks (treptichnids) in Ediacaran sediments of Namibia have demonstrated that the Cambrian explosion occurred more gradually than previously thought. This has recently been confirmed in the article that was published in the Nature Scientific Reports.”

Pretzeliformis bulldoze to search for food
According to the article there is evidence that   during the Ediacaran period   worm-like animals such as the Parasammichnites pretzeliformis were already so far developed that they, due to coelom development and size increase, for the first time in the history of the Earth, were able to disturb and bulldoze sediments.  In this way they were able to find a new food source in sea sediments. Bulldozing animals were previously thought to have originated only during and after the Cambrian explosion and not during the older Ediacaran.

“Another major aim of my cooperative research is to improve our knowledge of the geology of the Ediacaran to early Cambrian of South Africa and Namibia. We also intend to establish how the assembly of the supercontinent Gondwana took place. This improved knowledge can be of great future economic interest since large oil, gas and limestone sources occur in Ediacaran-age sediments outside South Africa”.

News Archive

Dr Charlotte Boucher and Lindi Heyns examine possible anti-microbial activity in the skin of Western olive toad species
2014-12-22

 

Researchers Lindi Heyns and Dr Charlotte Boucher are working together on an interdisciplinary project between the Departments of Zoology and Entomology and Veterinary Biotechnology at the University of the Free State (UFS). The focus of their research is on the preliminary biochemical description of skin secretions in some South African toads.

The project forms part of an Honours study executed by Dwayne Pike under Heyns’ supervision. He is co-supervised by Dr Boucher who is assisting with the biochemical and microbiological assays.

Dr Boucher said, “Amphibians are characterised by the presence of cutaneous glands spread over the skin. There are two types of glands, namely mucous and granular (poison), located on the inner surface of the epidermis. Mucous glands are widely dispersed over the skin, while granular glands can be grouped and enlarged in specific regions. Mucous glands are generally associated with maintenance of humidity and cutaneous respiration, whereas granular glands function in chemical defence against predators and/or microbial infection. Studies indicate that the compounds produced by the granular glands belong to numerous chemical classes with diverse pharmacological activities.”

The products secreted by granular glands are rich in low molecular weight constituents of varied molecular types, including proteins, peptides and toxins. These secretions make the toad foul-tasting to predators and even toxic to other frog species. In addition, amphibians offer an attractive source of novel antimicrobials. Studies indicate that as a response to inhabiting microorganism-rich environments they synthesise and secrete a diverse array of antimicrobial peptides (AMPs) as an innate form of defence. Extensive research by various other research groups has been carried out on antimicrobial peptides of the genus Rana; however, hardly any studies have investigated the antimicrobial activity of African frog species.

The focus of this preliminary project is to determine the protein composition of the glandular secretions of the Western olive toad (Amietophrynus poweri), using biochemical tests, such as SDS-PAGE also known as protein gel electrophoresis combined with mass-spectrometry used to identify unknown peptides and proteins. This will give us an overview of the composition of the glandular secretions. Furthermore, we are also looking at microbiological tests, which include assays that test for possible anti-microbial activity against various bacterial and fungal species.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept