Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2018 Photo Oteng Mpete
UFS and Medtronic collaboration set to enhance cardiac
From the left: Zampieri Luigi: Medtronic; Dania Choucair: Medtronic; Peter Fuller: Medtronic; Prof Francis Petersen: UFS Rector and Vice-Chancellor; Prof Gert van Zyl:Dean of the Faculty of Health Sciences, and Eline Visser: Medtronic.

A new Cardiac Simulation laboratory will be opened and hosted within the School of Biomedical Sciences’ Clinical Simulation and Skills Unit, at the University of the Free State’s Bloemfontein Campus. The new laboratory is a result of a partnership between Medtronic and UFS. 

The new laboratory will be used to enhance training for cardiothoracic, cardiology, vascular surgery, anaesthesiology and multiprofessional teams   such as doctors, nurses and allied health professionals. The establishment of the laboratory will be made possible by the generous provision of equipment for the establishment and operation of the Cardiac Simulation laboratory by Medtronic.  

Prioritising of patients at the heart of collaboration 

The development of a Cardiac Simulation laboratory at the UFS will not only benefit the training of specialists in various fields of specialisation but will also improve patient safety and reduce complication and mortality rates. The UFS is proud to be part of this initiative to train healthcare professionals to the benefit of the patients.

The Medtronic and UFS contract signing was attended by key stakeholders who included Prof Francis Smit: Head of Cardiothoracic Surgery; Prof Mathys Labuschagne: Head of the Clinical Simulation and Skills Unit; Prof Gert van Zyl: UFS Dean of the Faculty of Health Sciences and Prof Francis Petersen: UFS Rector and Vice-Chancellor. In attendance from Medtronic were Dania Choucair: Medtronic Director Clinical Research and Medical Education; Peter Fuller: Medtronic Country Director; Zampieri Luigi: Business Director   Cardiovascular Group; and Eline Visser: Business Manager   Structural Heart.

The Cardiac Simulation laboratory will make use of part task trainers, medium- and high- fidelity simulation as well as virtual-reality simulation to develop integrated interdisciplinary simulation programmes. These programmes are essential for proficiency development through deliberate practice and should become a statutory requirement for future trainees.

Objective and improved quality of training  

Standard cardiothoracic surgical training programmes are still based on the apprentice model. It implies that registrars in all programmes will attain surgical competency in addition to theoretical training fulfilling minimum statutory requirements for licensing and independent practice. It is highly dependent on surgical volumes, attitude of trainers and perceived surgical ability of the trainee. At best, it produces a mixed bag of competency levels. 

Well-designed integrated interdisciplinary simulation programmes offer an alternative that allows for deliberate practice in an organised step-wise progression model, with inbuilt assessment and feedback systems. This allows for proficiency training rather than competency training in which clear objectives can be met.

The UFS cardiothoracic programme is being designed as a hub and spoke model for South Africa and sub-Saharan Africa, combining distance learning with an onsite high-fidelity simulation and assessment centre. Off-site training in crew resource management or CRM (which addresses communication, decision-making, team-building and maintenance, workload management and situational awareness management), educational theory, surgical theory and basic bench model simulation will be provided. 

Multidisciplinary streams of knowledge 
According to Profs Francis Smit and Mathys Labuschagne, the role of simulation is a dynamic process of continuous movement between theory, simulation and clinical exposure.  “We strive to create an environment where there is free flow between these different components. Registrars and students come from different educational and cultural backgrounds in South Africa and Sub-Saharan Africa and by allowing deliberate practice for students with different needs to practice in their own time is contributing tremendously to students’ individual outcomes and development in the specialty.” 

This dynamic fulfils the needs of students with different competency levels and previous clinical exposure. Debriefing and formative assessment per session are pre-requisites for attending high-fidelity and virtual-reality simulation sessions at the Cardiac Simulation laboratory, because this kind of feedback contributes to the clinical and surgical development as well as inter-professional collaboration of the trainees. 

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept