Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2018 Photo Oteng Mpete
UFS and Medtronic collaboration set to enhance cardiac
From the left: Zampieri Luigi: Medtronic; Dania Choucair: Medtronic; Peter Fuller: Medtronic; Prof Francis Petersen: UFS Rector and Vice-Chancellor; Prof Gert van Zyl:Dean of the Faculty of Health Sciences, and Eline Visser: Medtronic.

A new Cardiac Simulation laboratory will be opened and hosted within the School of Biomedical Sciences’ Clinical Simulation and Skills Unit, at the University of the Free State’s Bloemfontein Campus. The new laboratory is a result of a partnership between Medtronic and UFS. 

The new laboratory will be used to enhance training for cardiothoracic, cardiology, vascular surgery, anaesthesiology and multiprofessional teams   such as doctors, nurses and allied health professionals. The establishment of the laboratory will be made possible by the generous provision of equipment for the establishment and operation of the Cardiac Simulation laboratory by Medtronic.  

Prioritising of patients at the heart of collaboration 

The development of a Cardiac Simulation laboratory at the UFS will not only benefit the training of specialists in various fields of specialisation but will also improve patient safety and reduce complication and mortality rates. The UFS is proud to be part of this initiative to train healthcare professionals to the benefit of the patients.

The Medtronic and UFS contract signing was attended by key stakeholders who included Prof Francis Smit: Head of Cardiothoracic Surgery; Prof Mathys Labuschagne: Head of the Clinical Simulation and Skills Unit; Prof Gert van Zyl: UFS Dean of the Faculty of Health Sciences and Prof Francis Petersen: UFS Rector and Vice-Chancellor. In attendance from Medtronic were Dania Choucair: Medtronic Director Clinical Research and Medical Education; Peter Fuller: Medtronic Country Director; Zampieri Luigi: Business Director   Cardiovascular Group; and Eline Visser: Business Manager   Structural Heart.

The Cardiac Simulation laboratory will make use of part task trainers, medium- and high- fidelity simulation as well as virtual-reality simulation to develop integrated interdisciplinary simulation programmes. These programmes are essential for proficiency development through deliberate practice and should become a statutory requirement for future trainees.

Objective and improved quality of training  

Standard cardiothoracic surgical training programmes are still based on the apprentice model. It implies that registrars in all programmes will attain surgical competency in addition to theoretical training fulfilling minimum statutory requirements for licensing and independent practice. It is highly dependent on surgical volumes, attitude of trainers and perceived surgical ability of the trainee. At best, it produces a mixed bag of competency levels. 

Well-designed integrated interdisciplinary simulation programmes offer an alternative that allows for deliberate practice in an organised step-wise progression model, with inbuilt assessment and feedback systems. This allows for proficiency training rather than competency training in which clear objectives can be met.

The UFS cardiothoracic programme is being designed as a hub and spoke model for South Africa and sub-Saharan Africa, combining distance learning with an onsite high-fidelity simulation and assessment centre. Off-site training in crew resource management or CRM (which addresses communication, decision-making, team-building and maintenance, workload management and situational awareness management), educational theory, surgical theory and basic bench model simulation will be provided. 

Multidisciplinary streams of knowledge 
According to Profs Francis Smit and Mathys Labuschagne, the role of simulation is a dynamic process of continuous movement between theory, simulation and clinical exposure.  “We strive to create an environment where there is free flow between these different components. Registrars and students come from different educational and cultural backgrounds in South Africa and Sub-Saharan Africa and by allowing deliberate practice for students with different needs to practice in their own time is contributing tremendously to students’ individual outcomes and development in the specialty.” 

This dynamic fulfils the needs of students with different competency levels and previous clinical exposure. Debriefing and formative assessment per session are pre-requisites for attending high-fidelity and virtual-reality simulation sessions at the Cardiac Simulation laboratory, because this kind of feedback contributes to the clinical and surgical development as well as inter-professional collaboration of the trainees. 

News Archive

Breeding of unique game requires a balance between conservation and sustainable use
2014-05-20

 

Game bred for qualities such as unconventional hair colour or horn quality, may on the long term have unexpected consequences for biodiversity and game farming.

This is according to the inaugural lecture of Prof Paul Grobler from the Department of Genetics at the University of the Free State (UFS).

Prof Grobler feels that the consequences of selective breeding should be examined carefully, as there is currently much speculation on the subject without sound scientific information to back it.

“At the moment, colour variation invokes much interest among game farmers and breeders. Unusual colour variants are already available in different game species. These unusual animals usually fetch much higher prices at auctions compared to prices for the ‘normal’ individuals of the species.”

Examples of these unusual variants are springbuck being bred in white, black or copper colours, the black-backed or ‘saddleback’ impala, and the gold-coloured and royal wildebeest.

A black-backed impala was recently sold for R5,7 million.

“Based on genetic theory, good reason exists why these practices need to be monitored, but one should also take care not to make the assumption that selective breeding will inevitably lead to problems,” warns Prof Grobler.

Grobler says that negative characteristics in a species can sometimes unwittingly be expressed during the selection process for a unique colour. “It is seen, for example, in purebred dogs where the breeding of a new race sometimes brings underlying genetic deviations in the species to the front.” He also believes that some of these animals may not be able to adapt to changing environmental conditions.

“However, one should also look at the positive side: because of the good demand for game, including unusual variants, there is much more game in South Africa today than in many decades. Balance should be found between the aims of conservation and the sustainable utilisation of game.”

Research at the UFS’s Department of Genetics is now trying to establish the genetic effects of intensive game breeding and predict the impact on biodiversity.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept