Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2018 Photo Varsity Cup
Vishuis crowned Varsity Cup Residence Rugby champs three consecutive years
Heinrich Nieuwenhuizen, flanker of Vishuis, was named the Player that Rocks in the final of the Varsity residence competition.

Vishuis players are prepared to do whatever it takes to be successful, even if it means practising on Friday evenings or on Saturdays. 

According to head coach, Zane Botha, this is one of the reasons behind the residence’s success on the rugby field.

Vishuis defended its title as the country’s rugby residence champions when they smashed Patria from the North-West University with 55-29 in the final of the Varsity residence competition on Monday 16 April 2018. It was their third consecutive national crown, and their sixth overall. 

The winning margin was the biggest ever in a final of the competition. 

“The players play for each other and have a huge work ethic. Nothing will hold them back from striving to be the best,” said Botha, who captained Tuks to the Varsity Cup crown in 2012. This is his second year as Vishuis coach.

Strong brotherhood
Captain Henco Posthumus, who played in his fifth final, said there is a strong brotherhood in the hostel. “We are a very small residence with a rich history spanning over 111 years, and all of us know each other. People such as our coach, Zane Botha, played a big role. I have a world of respect for him for what he has done with the team, so all the credit to the coaching staff as well.”

The University of the Free State has dominated the competition since its inception in 2008, proving just how strong hostel rugby is here.

Apart from the six titles for Vishuis, Armentum (2009) and Heimat (2014) both won the trophy before, while Vishuis was also the runner-up in 2015.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept