Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2018 Photo Varsity Cup
Vishuis crowned Varsity Cup Residence Rugby champs three consecutive years
Heinrich Nieuwenhuizen, flanker of Vishuis, was named the Player that Rocks in the final of the Varsity residence competition.

Vishuis players are prepared to do whatever it takes to be successful, even if it means practising on Friday evenings or on Saturdays. 

According to head coach, Zane Botha, this is one of the reasons behind the residence’s success on the rugby field.

Vishuis defended its title as the country’s rugby residence champions when they smashed Patria from the North-West University with 55-29 in the final of the Varsity residence competition on Monday 16 April 2018. It was their third consecutive national crown, and their sixth overall. 

The winning margin was the biggest ever in a final of the competition. 

“The players play for each other and have a huge work ethic. Nothing will hold them back from striving to be the best,” said Botha, who captained Tuks to the Varsity Cup crown in 2012. This is his second year as Vishuis coach.

Strong brotherhood
Captain Henco Posthumus, who played in his fifth final, said there is a strong brotherhood in the hostel. “We are a very small residence with a rich history spanning over 111 years, and all of us know each other. People such as our coach, Zane Botha, played a big role. I have a world of respect for him for what he has done with the team, so all the credit to the coaching staff as well.”

The University of the Free State has dominated the competition since its inception in 2008, proving just how strong hostel rugby is here.

Apart from the six titles for Vishuis, Armentum (2009) and Heimat (2014) both won the trophy before, while Vishuis was also the runner-up in 2015.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept