Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 August 2018 Photo Charl Devenish
Mountain research Maloti-Drakensberg
Tucked in the foothills of the Maloti-Drakensberg Mountains is the Qwaqwa Campus of the University of the Free State (UFS), the home of the Afromontane Research Unit (ARU).

Mountains and highlands have always played an important role in the history of mankind. They produce economically essential goods and services (such as fresh water), host unique biodiversity, and offer unique recreational and tourism opportunities. Mountains are also a place for spiritual sanctuaries and are often used for journeys of self-reflection through pilgrimage.

In addition to these ‘feel good’ benefits, mountains are hazardous areas for communities and infrastructure and are vulnerable to natural disasters. Mountainous areas are also often natural borders defining geopolitical entities, but in the process splitting and marginalising communities, creating economic shadow zones and sometimes becoming highly militarised areas. 

“Southern African mountains provide enormous opportunities for holistic research as social-ecological systems, with some of the most interesting and least academically explored environments on Earth,” said Dr Vincent Clark, Director: Afromontane Research Unit (ARU) on the UFS Qwaqwa Campus

The Afromontane Research Unit
The Qwaqwa Campus of the University of the Free State (UFS) is the home of the ARU, a multidisciplinary flagship group addressing the largely under-researched mountainous landscapes of southern Africa. 

Research in the ARU is promoted around three broad themes to foster inter- and multidisciplinary discourse: (1) conservation and sustainable use of Afromontane biodiversity; (2) sustainable futures for the people of the Afromontane; and (3) living and doing business in the Afromontane –  with the intention of creating a sustainability science hub to bring the three themes into the ambit of solution-oriented transdisciplinary research, centred in the sustainable development goals and sustainability research in general. 

Continental leader
To achieve its vision of becoming a continental leader in African mountain research, the ARU is positioning itself as a mountain-knowledge generator and interchange by developing key relationships locally and internationally. The most valuable local partnership is with the South African Environmental Observation Network (SAEON), with which the ARU will be sharing a Research Chair. 

The Chair will contain strong expertise in the Social Sciences to complement the existing strong Natural Science element in both the ARU and SAEON. The Sustainability Science component is being built through inter alia a mutually-reinforcing relationship with the University of Tokyo and United Nations University, Tokyo. 

The future
“In tandem with robust collaborations to achieve its goals, the ARU provides an envious capacity-building programme for its early career campus academics, postdoctoral and postgraduate students,” said Dr Clark. 

The scale of influence of the ARU is prioritised as ‘back yard first’, namely solution-oriented research that benefits Phuthaditjhaba, Qwaqwa, Golden Gate Highlands National Park and Royal Natal National Park. Thereafter, the ARU seeks to facilitate research that encourages the sustainable development of the Maloti-Drakensberg as a unique social-ecological system in Africa, and from there facilitate research in the intellectual vacuum that is the southern African mountains. With time, the ARU aims to take the intellectual lead as an Africa-based leader in African mountain research. The success of this will depend on how carefully the development of human infrastructure can be balanced with that of the myriad opportunities presented.”

With a diverse and motivated team, situated in one of the most attractive environments in Africa, the ARU is here to change the way we think about African mountains and what they mean for us all. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept