Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 August 2018 Photo Anja Aucamp
Data analytics as key to student success
Knowing who our students are and what their needs are is crucial information that forms the foundation of how institutions could help students succeed to cross the hurdles of student life.

Knowing how to help students succeed through higher education is one of the most pressing challenges currently confronting the system. Despite a significant change in the student population over the past few decades, we are only now beginning to understand who our students are and what their needs are. This crucial information forms the foundation of how institutions could help students succeed. Through two national-level projects funded by the Kresge Foundation, the University of the Free State (UFS) is contributing to the understanding of students and the development of data analytics. 

Siyaphumelela
  

The first project’s goal is to improve the institutional capacity of five higher education institutions to develop institutional research, with a specific focus on data analytics. The UFS was selected to be part of the Siyaphumelela Programme (meaning ‘we succeed’ in isiXhosa) that is sponsored by the Kresge Foundation, and supported by the NGO, the South African Institute for Distance Education (Saide). The project has enabled the UFS to strengthen capacity, collaboration, and to promote a culture of evidence. 

The project has also enabled the UFS to move from data reporting to a more analytical approach. This approach has enabled it to assess the impact of larger student success efforts and continuously improve the quality of these efforts. A focus on data analytics has helped the institution to reflect on its infrastructure and data management procedures. The development of dashboards has also allowed information to be shared with faculties. The UFS therefore sees a data analytical focus as critical to improving its effectiveness and efficiency.

The UFS is also playing a leading role nationally to develop academic advising that helps students align their studies, career, and life goals. Academic advising at the UFS includes the first-year experience module UFS101, online advising portals, and individual consulting sessions for students which focus on curriculum planning and success coaching. We have also proved a significant relationship between academic advice, student engagement and success.(Read Creating pathways for student success and Understanding students: A key to systemic success).


Student engagement

The second national project is focused on student engagement and has been run by the Centre for Teaching and Learning at the UFS for 10 years. To date, 20 universities have participated in at least one survey and the project also plays an important role in supporting the Siyaphumelela project goals. 

Engagement data has helped us to better align teaching and learning, and design environments that put student success and quality at the centre of institutional thinking. 

The culmination of findings from student engagement data in 2017 led to the publication of the book: Engaging students: Using evidence to promote student success, edited by Prof Francois Strydom, George Kuh, and Dr Sonja Loots, with contributions from various international and national experts in the higher education environment. This is the first comprehensive publication contextualising student engagement findings in the South African context for the benefit of advancing student success.

Both these projects are contributing to significant developments in the field of higher education and arguably more importantly, to help students succeed.  

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept