Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2018
Media effectively used to save the giraffe
“If we can save the habitat wildlife need, then the animals will be just fine,” said Dr Francois Deacon, a wildlife habitat expert in the UFS Department of Animal, Wildlife and Grassland Sciences.

The University of the Free State (UFS) is leading the fight against the extinction of giraffes and has assembled the largest research team in the world to manage, coordinate, and address this issue. Seven UFS departments are involved in this research. 

Dr Francois Deacon, a wildlife habitat expert in the UFS Department of Animal, Wildlife and Grassland Sciences, is leading the team of researchers who tasked themselves with better understanding the giraffe, and in so doing, save the giraffe. He said: "One way to stop the plummeting numbers is to learn more about how giraffes use their habitat and how much area they need in order to survive."

Dr Deacon focuses on the spatial ecology of wild animals. His main research focus is to understand the ecological and biological factors that regulate giraffe in their natural habitat.

Documentaries save

He collaborated with a documentary film crew to release the second in a trilogy of documentaries regarding giraffes and their natural habitat. The first, Last of the Longnecks, focused on the fact that giraffes are becoming extinct. The second documentary, Catching Giants, which was released last year, includes footage on how a multi-specialist research group of over 30 people from 10 different countries worked together to collect information about these little-known animals.

Documentaries such as these, together with a recent insert in the local wildlife documentary on SABC 2, 50/50, also helped to raise awareness on the giraffe and its plight.

Telling the truth

Dr Deacon said: “It is extremely important for the public to see how involved we really are with a major problem such as a species becoming extinct. Media exposure outlines the truth of what man is doing to nature. Cooperating with media such as the BBC, National Geographic, and 50/50, offers other journalists, producers, editors, and authors the opportunity to also take responsibility for raising awareness on the issue.” 

“Apart from the fact that awareness is shedding light on the problem, it also highlights who the leaders in this field are, what they are doing to address the problem, and what more is needed to make a change. The latter includes the funding of postgraduate students to conduct further research on this matter. If we were able to gather sufficient knowledge through different research questions across the globe, we could really make a difference in saving giraffes from extinction.” 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept