Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2018
Media effectively used to save the giraffe
“If we can save the habitat wildlife need, then the animals will be just fine,” said Dr Francois Deacon, a wildlife habitat expert in the UFS Department of Animal, Wildlife and Grassland Sciences.

The University of the Free State (UFS) is leading the fight against the extinction of giraffes and has assembled the largest research team in the world to manage, coordinate, and address this issue. Seven UFS departments are involved in this research. 

Dr Francois Deacon, a wildlife habitat expert in the UFS Department of Animal, Wildlife and Grassland Sciences, is leading the team of researchers who tasked themselves with better understanding the giraffe, and in so doing, save the giraffe. He said: "One way to stop the plummeting numbers is to learn more about how giraffes use their habitat and how much area they need in order to survive."

Dr Deacon focuses on the spatial ecology of wild animals. His main research focus is to understand the ecological and biological factors that regulate giraffe in their natural habitat.

Documentaries save

He collaborated with a documentary film crew to release the second in a trilogy of documentaries regarding giraffes and their natural habitat. The first, Last of the Longnecks, focused on the fact that giraffes are becoming extinct. The second documentary, Catching Giants, which was released last year, includes footage on how a multi-specialist research group of over 30 people from 10 different countries worked together to collect information about these little-known animals.

Documentaries such as these, together with a recent insert in the local wildlife documentary on SABC 2, 50/50, also helped to raise awareness on the giraffe and its plight.

Telling the truth

Dr Deacon said: “It is extremely important for the public to see how involved we really are with a major problem such as a species becoming extinct. Media exposure outlines the truth of what man is doing to nature. Cooperating with media such as the BBC, National Geographic, and 50/50, offers other journalists, producers, editors, and authors the opportunity to also take responsibility for raising awareness on the issue.” 

“Apart from the fact that awareness is shedding light on the problem, it also highlights who the leaders in this field are, what they are doing to address the problem, and what more is needed to make a change. The latter includes the funding of postgraduate students to conduct further research on this matter. If we were able to gather sufficient knowledge through different research questions across the globe, we could really make a difference in saving giraffes from extinction.” 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept