Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2018
Media effectively used to save the giraffe
“If we can save the habitat wildlife need, then the animals will be just fine,” said Dr Francois Deacon, a wildlife habitat expert in the UFS Department of Animal, Wildlife and Grassland Sciences.

The University of the Free State (UFS) is leading the fight against the extinction of giraffes and has assembled the largest research team in the world to manage, coordinate, and address this issue. Seven UFS departments are involved in this research. 

Dr Francois Deacon, a wildlife habitat expert in the UFS Department of Animal, Wildlife and Grassland Sciences, is leading the team of researchers who tasked themselves with better understanding the giraffe, and in so doing, save the giraffe. He said: "One way to stop the plummeting numbers is to learn more about how giraffes use their habitat and how much area they need in order to survive."

Dr Deacon focuses on the spatial ecology of wild animals. His main research focus is to understand the ecological and biological factors that regulate giraffe in their natural habitat.

Documentaries save

He collaborated with a documentary film crew to release the second in a trilogy of documentaries regarding giraffes and their natural habitat. The first, Last of the Longnecks, focused on the fact that giraffes are becoming extinct. The second documentary, Catching Giants, which was released last year, includes footage on how a multi-specialist research group of over 30 people from 10 different countries worked together to collect information about these little-known animals.

Documentaries such as these, together with a recent insert in the local wildlife documentary on SABC 2, 50/50, also helped to raise awareness on the giraffe and its plight.

Telling the truth

Dr Deacon said: “It is extremely important for the public to see how involved we really are with a major problem such as a species becoming extinct. Media exposure outlines the truth of what man is doing to nature. Cooperating with media such as the BBC, National Geographic, and 50/50, offers other journalists, producers, editors, and authors the opportunity to also take responsibility for raising awareness on the issue.” 

“Apart from the fact that awareness is shedding light on the problem, it also highlights who the leaders in this field are, what they are doing to address the problem, and what more is needed to make a change. The latter includes the funding of postgraduate students to conduct further research on this matter. If we were able to gather sufficient knowledge through different research questions across the globe, we could really make a difference in saving giraffes from extinction.” 

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept