Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 August 2018 Photo Barend Nagel
WomenOfKovsies Prof LenkaBula foresees transformation at UFS
Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, Prof Puleng LenkaBula, takes the lead in transforming Student Experiences at the UFS.

“It’s important to think about transformation in ways that are responsive to the challenges which students have raised,” said Prof Puleng LenkaBula. She thinks of transformation as constitutive of deliberative processes, actions, reflections, writings, and literary expressions aimed as a response to the ecological, economic, political, and social context and questions which undergird the learning, research, and engagement of UFS students, staff, and stakeholders.

Prof LenkaBula is Vice-Rector: Institutional Change, Student Affairs, and Community Engagement at the University of the Free State (UFS). 

Committed to knowledge production, novelty, and the advancement of socio-economic development in South Africa, Prof LenkaBula assumes position as work-stream leader for Student Experience in the Integrated Transformation Plan (ITP). The plan aims to identify areas of transformation that the UFS marks to revolutionise and implement in its pursuit of delivering quality graduates who will be able to contest in a global realm of competitors.

Importance of revolutionising Student Experience at the UFS

“My job is to ensure that students flourish academically and are cultivated holistically as human beings who bring embodied knowledge and experiences which will enable them to succeed in life,” detailed Prof LenkaBula. 

She also contributes towards change in the Engaged Scholarship as well as the Names, Symbols and Spaces work streams of the ITP. Prof LenkaBula has been deemed powerful in her ability to traverse disciplinary parameters, research, stakeholder cultivation, and development.

“It is important to navigate symbols and spaces as a co-aspect of Student Experience to enrich the diversity of know-hows at the UFS and map a university that will represent a value-system that prioritises inclusivity and diversity,” urged Prof LenkaBula with reference to the significance of her role in the implementation of the ITP. 
 
ITP deemed an integral mechanism of growth for Kovsies


Ensuring that UFS graduates are locally adept, knowledgeable, active, and globally competitive in imperative areas of interest, highlights the general importance of the ITP for Prof LenkaBula.

The Vice-Rector underlined that the UFS has had historical challenges within its existence which have demonstrated a need for change that promotes dignity for all and respect for the diversity of its people, in an effort to secure social cohesion.

“Open dialogue and participation are mechanisms that the university needs to make use of to engage the past in order to create constructive directions for the future,” said Prof LenkaBula.

She concluded by stating that the UFS is a key global resource, as we live in a state of economic globalisation. “Knowledge is an essential imperative in knowledge-economies that breed skilled labour, and the ability to think critically in order to formulate ideas that will change the world”, said Prof LenkaBula.

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept