Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 August 2018 Photo Barend Nagel
WomenOfKovsies Prof LenkaBula foresees transformation at UFS
Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, Prof Puleng LenkaBula, takes the lead in transforming Student Experiences at the UFS.

“It’s important to think about transformation in ways that are responsive to the challenges which students have raised,” said Prof Puleng LenkaBula. She thinks of transformation as constitutive of deliberative processes, actions, reflections, writings, and literary expressions aimed as a response to the ecological, economic, political, and social context and questions which undergird the learning, research, and engagement of UFS students, staff, and stakeholders.

Prof LenkaBula is Vice-Rector: Institutional Change, Student Affairs, and Community Engagement at the University of the Free State (UFS). 

Committed to knowledge production, novelty, and the advancement of socio-economic development in South Africa, Prof LenkaBula assumes position as work-stream leader for Student Experience in the Integrated Transformation Plan (ITP). The plan aims to identify areas of transformation that the UFS marks to revolutionise and implement in its pursuit of delivering quality graduates who will be able to contest in a global realm of competitors.

Importance of revolutionising Student Experience at the UFS

“My job is to ensure that students flourish academically and are cultivated holistically as human beings who bring embodied knowledge and experiences which will enable them to succeed in life,” detailed Prof LenkaBula. 

She also contributes towards change in the Engaged Scholarship as well as the Names, Symbols and Spaces work streams of the ITP. Prof LenkaBula has been deemed powerful in her ability to traverse disciplinary parameters, research, stakeholder cultivation, and development.

“It is important to navigate symbols and spaces as a co-aspect of Student Experience to enrich the diversity of know-hows at the UFS and map a university that will represent a value-system that prioritises inclusivity and diversity,” urged Prof LenkaBula with reference to the significance of her role in the implementation of the ITP. 
 
ITP deemed an integral mechanism of growth for Kovsies


Ensuring that UFS graduates are locally adept, knowledgeable, active, and globally competitive in imperative areas of interest, highlights the general importance of the ITP for Prof LenkaBula.

The Vice-Rector underlined that the UFS has had historical challenges within its existence which have demonstrated a need for change that promotes dignity for all and respect for the diversity of its people, in an effort to secure social cohesion.

“Open dialogue and participation are mechanisms that the university needs to make use of to engage the past in order to create constructive directions for the future,” said Prof LenkaBula.

She concluded by stating that the UFS is a key global resource, as we live in a state of economic globalisation. “Knowledge is an essential imperative in knowledge-economies that breed skilled labour, and the ability to think critically in order to formulate ideas that will change the world”, said Prof LenkaBula.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept