Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 December 2018 | Story Andre Grobler | Photo Supplied
Drought read more
Water-saving initiatives have been implemented throughout the university’s campuses to withstand the drought.

An attentive visitor to the University of the Free State (UFS) would have noticed that in the past year, certain parts of the Bloemfontein Campus’ gardens have undergone a change. This is part of the UFS’s water-wise and grey-water initiatives that are a response to the ongoing local drought conditions and water restrictions.

Waterless gardens

Senior Director: University Estates, Nico Janse van Rensburg, says the environmental conditions have had a severe impact on the appearance of the gardens. “The era where we had big lawns, has passed.”

Janse van Rensburg says the UFS decided to start the initiative at two highly visible areas, two traffic circles, one at the George du Toit Building and the other the Francois Retief Building.

More landscape changes can be seen in the gardens around the Biotechnology Building, Geography building and Muller Potgieter Building, as well as near the Institute for Groundwater Studies, Engineering Science and the Thakaneng Bridge.

Towards an energy-efficient environment

Paving in these areas is designed to allow for water to soak into the ground. Acting Grounds Services Manager, De Wet Dimo, says more than 100 indigenous trees, which are more adaptive to local environmental conditions, have also been planted. He says a new wood chipper which was recently purchased, will turn dead trees in gardens into wood chips to be used as mulch for new plants.

Dimo says the new look and feel of the gardens was created by using hard elements, paving and indigenous succulents.

New student residences, including those in Qwaqwa and South Campus will use a grey-water system using water which will be collected from showers and basins. The piping at two older residences on the Bloemfontein Campus has also been renovated to a two-way system.

“Rainwater harvesting systems have been fitted at all residences and academic buildings,” said Dimo. The 19 tanks that have been installed have a storage capacity of 265 kilolitres.  Janse van Rensburg says other water-wise initiatives that have been put into action include installing waterless urinals in administrative and academic buildings, water restrainers, pressure control systems (reducing the volume of water) and push-button systems instead of taps.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept