Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 December 2018 | Story Leonie Bolleurs | Photo Barend Nagel
Marcelle Vermeulen
Marcele Vermeulen, a graduate from the Department of Plant Sciences, explores possible threats to crop production; contributing to food security in South Africa.

Global food security is currently threatened both by climate change and the low diversity of crops relied on by humankind to feed a growing world population. Marcele Vermeulen, a graduate in the Department of Plant Sciences who will receive her PhD at the December graduation ceremonies at the University of the Free State (UFS), is part of a team that is working hard to add to the diversity of staple foods in South Africa.

In the drive to focus on alternative crops, Marcele is researching the crop, Amaranthus cruentus, (grain amaranth). It is more tolerant to environmental stress for large-scale production, thereby also diversifying staple crops.

Relatively new development

“Amaranthus cruentus is an excellent candidate due to its high nutritional value and tolerance to drought and high temperatures. It can be mixed with conventional maize meal, to increase the protein intake of its consumers,” said Marcele.

The production of A. cruentus as a grain crop in South Africa is a relatively new development.

In her research, exploring the possible threats to crop production and paying particular attention to dominant plant pathogens in the Amaranthus cruentus, Marcele found a correlation between fungal pathogens and insect pests. 

Insect pests can influence plant diseases

Although reports on fungal pathogens and pests specific to A. cruentus are limited to and information for South Africa is limited to this study, there is a possibility that by controlling insect pests such as weevils, one might also be able to control fungal pathogens of Amaranthus cruentus.

Marcele believes that control of weevil pests should thus be the focus of future pest and pathogen management strategies and breeding programmes in A. cruentus.  

“Knowledge gained in my thesis will hopefully aid in the development of future cultivation practices, integrated pest/pathogen management programmes, as well as for the registration of crop protection products for A. cruentus,” Marcele added.

Research Contributes to Food Security from University of the Free State on Vimeo.

News Archive

Professor’s research part of major global programme
2011-04-04

 

Prof. Zakkie Pretorius, professor in Plant Pathology in the Department of Plant Sciences at our university

Research by Zakkie Pretorius, professor in Plant Pathology in the Department of Plant Sciences at our university, has become part of Phase II of a mayor global project to combat deadly strains of a wheat pathogen that poses a threat to global food security.

Prof. Pretorius focuses on the identification of resistance in wheat to the stem rust disease and will assist breeders and geneticists in the accurate phenotyping of international breeding lines and mapping populations. In addition, Prof. Pretorius will support scientists from Africa with critical skills development through training programmes. During Phase I, which ends in 2011, he was involved in pathogen surveillance in Southern Africa and South Asia.
 
The Department of International Development (DFID) in the United Kingdom and the Bill and Melinda Gates Foundation will invest $40 million over the next five years in the global project led by the Cornell University. The project is aimed at combating deadly strains of Ug99, an evolving wheat pathogen that is a dangerous threat to global food security, especially in the poorest nations. 
 
The Cornell University said in a statement, the grant made to the Durable Rust Resistance in Wheat (DRRW) project at Cornell will support efforts to identify new stem-rust resistant genes in wheat, improve surveillance, and multiply and distribute rust-resistant wheat seed to farmers and their families.
 
Researchers worldwide will be able to play an increasingly vital role in protecting wheat fields from dangerous new forms of stem rust, particularly in countries whose people can ill afford the economic impact of damage to this vital crop.
 
The Ug99 strain was discovered in Kenya in 1998, but are now also threatening major wheat-growing areas of Southern and Eastern Africa, the Central Asian Republics, the Caucasus, the Indian subcontinent, South America, Australia and North America.
 
Prof. Pretorius was responsible for the first description of this strain in 1999.
 
Among Cornell’s partners are national research centres in Kenya and Ethiopia, and scientists at two international agricultural research centres that focus on wheat, the Mexico-based International Maize and Wheat Improvement Center (known by its Spanish acronym as CIMMYT), and the International Center  for Agricultural Research in the Dry Areas (ICARDA), in Syria. Advanced research laboratories in the United States, Canada, China, Australia, Denmark and South Africa also collaborate on the project. The DRRW project now involves more than 20 leading universities and research institutes throughout the world, and scientists and farmers from more than 40 countries.


Media Release
28 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept