Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

UFS apologises for noise disturbance during newcomers' student festival
2010-02-01

Last night (Saturday, 30 January 2010), the University of the Free State (UFS) received various complaints regarding disturbance caused by the noise during a student function that took place at the Rag Farm on the Main Campus.

"I wish to apologise on behalf of the UFS for the inconvenience that residents in the neighbouring residential areas had to suffer during the Newcomers’ Student Festival last night,” said Mr Rudi Buys, Dean of Student Affairs at the UFS.

The function took place to conclude the welcoming period for new students. “Although strict measures applied regarding the staging of the event, amongst others, cut-off times for the performances of the guest artists and die organisation of the Rag Farm to prevent excessive noise, various unexpected factors made this difficult,” said Mr Buys.

One of the factors was the fact the more than double the expected number of spectators attended the event. As a result of this, measures pertaining to crowd control had to be adjusted. “Although we managed to end the event without any incidents, I am truly sorry that we could not bring the disturbance caused to the neighbouring suburbs to an end earlier,” he said.

“We are committed to finding a sustainable solution to those types of challenges that student events at the Rag Farm can offer to the neighbouring residential areas. Therefore we are going to call meetings with residents and community leaders of the residential areas in order to resolve the problems in a collaborative manner,” Mr Buys said.

An internal evaluation of the situation shall also be undertaken in order to rectify any possible errors or shortcomings in the organisation of the Newcomers’ Student Festival, as well as regarding the organisation of future student events.

“We would like to thank residents of the neighbouring residential areas for the exceptional way in which they often exercise patience, show understanding and make allowances for the times when student activities taking place on the Main Campus become demanding. It is therefore important for us to find solutions to challenges in this regard and engage in meaningful cooperation with residents,” said Mr Buys.

Media Release
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
31 January 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept