Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

Producers to save thousands with routine marketing strategies, says UFS researcher
2014-09-01

 

Photo: en.wikipedia.org

Using derivative markets as a marketing strategy can be complicated for farmers. The producers tend to use high risk strategies which include the selling of the crop on the cash market after harvest; whilst the high market risks require innovative strategies including the use of futures and options as traded on the South African Futures Exchange (SAFEX).

Using these innovative strategies are mostly due to a lack of interest and knowledge of the market. The purpose of the research conducted by Dr Dirk Strydom and Manfred Venter from the Department of Agricultural Economics at the University of the Free State (UFS) is to examine whether the adoption of a basic routine strategy is better than adopting no strategy at all.

The research illustrates that by using a Stochastic Efficiency with Respect to a Function (SERF) and Cumulative Distribution Function (CDF) that the use of five basic routine marketing strategies can be more rewarding. These basic strategies are:
• Put (plant time)
• Twelve-segment pricing
• Three-segment pricing
• Put (pollination)(Critical Moment in production/marketing process), and
• Pricing during pollination phase.

These strategies can be adopted by farmers without an in-depth understanding of the market and market-signals. Farmers can save as much as R1.6 million per year on a 2000ha farm with an average yield.

The results obtained from the research illustrate that each strategy is different for each crop. Very important is that the hedging strategies are better than no hedging strategy at all.

This research can also be applicable to the procurement side of the supply chain.

Maize milling firms use complex procurement strategies to procure their raw materials, or sometimes no strategy at all. In this research, basic routine price hedging strategies were analysed as part of the procurement of white maize over a ten-year period ranging from 2002–2012. Part of the pricing strategies used to procure white maize over the period of ten years were a call and min/max strategy. These strategies were compared to the baseline spot market. The data was obtained from the Johannesburg Stock Exchange’s Agricultural Products Division better known as SAFEX.

The results obtained from the research prove that by using basic routine price-hedging strategies to procure white maize, it is more beneficial to do so than by procuring from the spot market (a difference of more than R100 mil).

Thus, it can be concluded that it is not always necessary to use a complex method of sourcing white maize through SAFEX, to be efficient. By implementing a basic routine price hedging strategy year on year it can be better than procuring from the spot market.

Understanding the Maize Maze by Dr Dirk Strydom and Manfred Venter (pdf) - The Dairy Mail


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept