Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

When you are deaf, you have to work very hard to join in the conversation
2014-09-11

 

Dr Magteld Smith

A researcher at the University of the Free State is part of an overseas audiological breakthrough, after receiving a newly developed cochlear implant processor.

Dr Magteld Smith, researcher at the University of the Free State’s Department of Otorhinolaryngology, is the first South African to receive the Rondo cochlear implant processor from Med-El in Austria, manufacturers of cochlear implants and audiology-assisting appliances.

In the field of cochlear implants, the Rondo device is very advanced in the sense that the single-unit device is wireless and easily adapts to the sound of various environments (i.e. nature, conference halls, planes and phones). It also enables the receiver of a cochlear implant to hear more than one sound at a time – something that wasn’t previously possible.

Dr Smith tells about the meaning of the device in just a short time: “For the first time I can take a walk with my dog and hear both our footsteps on the gravel of the dirt road. I can hear my own footsteps, as well as the chirping of three different birds. All at the same time.”

Dr Smith, who is currently devoting her research to the medical-social model of the global organisation, International Classification of Functioning, Disabilities and Health, as well as research in all fields of deafness, relates the anxiety, frustration and depression which formed part of her daily existence. It also complicated and undermined her academic participation.

“Deafness is very traumatic. When you are deaf, you have to work so much harder to compete in a hearing world and to join in the conversation. Because of your deafness you become anxious about misunderstandings in the workplace.”

Dr Smith is working hard and constantly not to take a back seat in the academy due to her deafness. On completion of the Hubert H. Humphrey Fellowship programme, she received a certificate signed by the American president, Barack Obama, and was named as one of the top three researchers among 400 researchers from 192 countries. Only two South Africans are selected every year by the American State and International Institute for Education. 
 
In June this year, she delivered a presentation of her work and research at the 13th International Conference on Cochlear Implants in Munich, Germany. In July this year, she delivered a presentation at the 5th International Conference for Global Hearing Health. In August she was awarded a scholarship from the Golden Key International Honour Society for outstanding scholastic proficiency and academic merit.

“As a child, my parents were told that I was ineducably disabled. Today, I am grateful for the endless speech therapy since my toddler days, and to my dear mother, Jo, and late father, Chris Boshoff, and their firm belief in God which made them believe in me as a person with a congenital deafness. I am grateful for their unconditional love, endless patience, encouragement and support through my long journey in a competitive hearing world. This, together with the help of technology, enabled me to make a significant contribution to the academic world. Everything in my life is undeserved grace, pure kindness.” 
 
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept