Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

A call for next generation of professors: Apply for the Vice-Chancellor’s Prestige Scholars’ Programme
2014-12-19

 

Examples of the rector's prestige scholars' international footprint: Dr Olihile Sebolai, Fulbright scholar (left) returned to the UFS after six months at the University of Birmingham and three at the University of Missouri. Dr Cilliers van den Berg (right) visited Cornell University on a ten-month sabbatical.

The Vice-Chancellor’s Prestige Scholars’ Programme (PSP) seeks to identify, develop and promote the next cohort of the most promising and talented UFS academic members of staff who obtained a doctoral degree within the last five years or will graduate by June 2015.

Scholars identified benefit from an intensive programme of academic and professional support that includes an advanced residential programme, exposure to leading scholars, concentrated reading and writing programmes, high-level seminar participation and presentation, nuanced publication schedules and personal mentoring and advice, including participation in the annual PSP mock NRF rating and the development of a postdoctoral intellectual project for funding submission (Thuthuka, and similar).

Past prestige scholars have become Fulbright scholars, received funding from among others the Association of Commonwealth Universities, the Japan Society for the Promotion of Science, Erasmus Mundus, NRF Blue Skies, Thuthuka, etc. They have spent time at universities in Canada, the USA, United Kingdom, Europe and Japan.

This year the selection process will be anticipated by pre-selection. Final selection to the programme will take place in September 2015. The selection is highly competitive, and aimed at those young scholars with the potential to obtain upper-level NRF ratings (Y1 and P).

Criteria for selection:

Recently obtained a PhD degree. 
Evidence of an active publication record. 
Early recognition of scholarly work, e.g. successful funding/grant applications and academic awards. 
The early development of a post-doctoral intellectual project that shows evidence of scholarly “potential” (defined by the NRF Y-category). 
Indication of the young scholar’s understanding of what their envisaged postdoctoral endeavours will contribute to the body of disciplinary knowledge. 
Full participation in the pre-selection residential programme and activities is a requirement for selection.

Call for interest: 2015 (PDF)

Requests for further information can be directed to Prof Jackie du Toit at dutoitjs@ufs.ac.za.

Applications close on 16 February 2015.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept