Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

FASSET funding bid secures R54 million for black accounting students
2015-08-28

The Centre for Accounting in the Faculty of Economic and Management Sciences has made great strides with its INTRABAS projects, which support the development of black student enrolment and performance in Accounting Studies.

Recently, the university won four bids that have secured R54 million in funding from the Finance and Accounting Services Sector Education and Training Authority (FASSET) for 2016.  This funding will  support the teaching and learning initiatives of 960 black accounting students enrolling for the following four accounting programmes: BAcc, BCom(Acc), BAcc(Hons)/PGDipCA and BCom(Hons in Acc)/PGDipGA.The benefit to these students is the envisaged increase in throughput rates by 10% from year- to- year until the Honours year.  This covers tuition fees, text books, and extra tutorials, including autumn, winter and spring boot camps.

“FASSET funding will give the Centre for Accounting an opportunity to strengthen our current student-centered teaching model” said Prof Hentie van Wyk, Programme Director: Training of Accountants at the UFS.

The Centre for Accounting has a “1” accreditation grading from the South African Institute of Chartered Accountants (SAICA), and has achieved an 80% average success rate over the past three years in the Initial Test of Competency (ITC) of SAICA.

Download the application form for FASSET funding or collect one at the Centre for Accounting at the Faculty of Economic and Management Sciences.  The closing date for applications is 31 October 2015.

For more information, contact Dirkelien de Beer on +27(0)51 401 3688 debeerdb@ufs.ac.za /Prof Hentie van Wyk vanwykha@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept