Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

Three minutes for research
2015-09-07

When you have only three minutes in which to explain an 80 000-word thesis, every second counts. This is what researchers from across the country realised during the first national round of South Africa’s Three-minute thesis competition.

The University of the Free State (UFS) Postgraduate School hosted this international competition on the Bloemfontein Campus, where master’s and doctoral students from 12 universities participated. During the competition, each researcher had to give a presentation on his/her research within three minutes.

Dr Henriette van den Berg, Director of the UFS’s Postgraduate School, and presenter of the two-day competition, said the competition is the ideal platform to teach researchers how to become effective research communicators.

“It is important that researchers should learn to communicate the essence of their research to audiences that aren’t necessarily specialists in the field. They should also be able to emphasise how their research contributes to the success and well-being of communities. Researchers often have to explain to persons who aren’t specialists in their specific research area the reasons why it is important to fund the research, for example, or during a work interview. They should be able to convey the essence of their research effectively in a very short time.”

The 3MT competition, which originated at the University of Queensland in Australia, has in 2010 developed into an international trend since its inception. Currently, the 3MT is presented in Australia, the USA, and the UK.

For the competition, participants are given just three minutes to explain their research. In this time, they have to explain the problem and the methodology, as well as why this research is important. Participants are allowed to make use of only one piece of static imaging material for support.

A panel of judges from the participating universities were selected to assess each presentation, based on how well participants expressed themselves in such a short time, and on their choice of imagery.

Gavin Robinson from the University of Johannesburg, Cameron McIntosh, and Ingrid Alleman, both from the UFS, were the respective winners in the categories for doctoral and master’s students.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept