Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

HIV Cure – Just another fantasy?
2016-07-27

Description: HIV Cure – Just another fantasy? Tags: HIV Cure – Just another fantasy?

Dr Dominique Goedhals, Prof John Frater,
Dr Thabiso Mofokeng and Dr Jacob Jansen van Vuuren,
attended the lecture. Prof Frater has been working in
collaboration with the UFS Department of Internal
Medicine on HIV resistance and HIV immunology
since 2007.

Photo: Nonsindiso Qwabe

Twenty-years ago, after a person had been diagnosed with HIV, their lifespan did not exceed three years, but thanks to the success of antiretroviral therapy programmes, life expectancy has risen by an average of ten years. However, is antiretroviral therapy always going to be for life? This is the societal issue that Professor John Frater, addressed in his talk at the University of the Free State. He is an MRC Senior Clinical Fellow, Associate Professor and Honorary Consultant Physician in Infectious Diseases at  Oxford University.

Antiretroviral medicine therapeutic

The discovery of antiretroviral therapy - the use of HIV medicines to treat the virus - has had a positive effect on the health and well-being of people living with it, improving their quality of life. Unfortunately, if treatment is stopped, HIV rebounds to the detriment of the patient. Now, research has shown that some patients, who are treated soon after being infected by HIV, may go off treatment for prolonged periods. Work is being done to predict who will be able to stop treatment.

“The difference made by starting treatment earlier is enormous. Delaying treatment is denying yourself the right to health,” Professor Frater says. However, this does not mean that the virus is cured. “A person can live for ten years without being on HIV treatment, but is that enough?” he went on to ask.

Healthy lifestyles encouraged

The National Department of Health will adopt a test and treat immediately strategy later this year to improve patient health and curb the spread of HIV. ,This is another reason why everybody should know their status and start treatment as soon as possible.

Search for a cure continues

More research is being conducted to establish whether HIV can be eradicated. Remission gives hope that a permanent cure may be found eventually. “Will a cure for HIV ever be found? Time will tell,” he concluded.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept