Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 December 2018 | Story Leonie Bolleurs | Photo Anja Aucamp
Research possibilities of zebrafish exposed
Leading global genetics laboratories are replacing research on human and animal populations with zebrafish, says Prof Paul Grobler, Head of the UFS Department of Genetics.

The UFS Department of Genetics is on par with current research trends in terms of their zebrafish project. About a year has passed since they seriously started focusing on the potential of this tiny four-centimetre-long fish, and the possibilities are hugely exciting.

Looks are deceiving

Leading global genetics laboratories are replacing research on human and animal populations with zebrafish due to several fascinating reasons, of which the most profound is probably that the zebrafish share large portions of its genome with mammals. For genetics researchers this may make a lot of sense, but most people battle to see any resemblance between a six-foot-tall rugby player or 600 kg buffalo and a small, nearly transparent fish. It is in the detail, the researchers say.

Fast, effective, and visible

“The complete genome sequence of the zebrafish is known, and as much as 84% of genes known to be associated with human disease have zebrafish counterparts,” explains Head of Department, Prof Paul Grobler. Another advantage is the fast breeding rate and short generation time, and the fact that some research is ethically more justifiable when done on fish larvae rather than on adult mammals. The fact that zebrafish embryos are virtually transparent, also allow researchers to examine the development of internal structures without effort. Every blood vessel in a living zebrafish embryo is visible under a low-power microscope.

Multidisciplinary

Zebrafish provide research potential for many different study fields besides that of Prof Grobler and his team, Sue Rica Schneider and Dr Willem Coetzer. In the near future, they aim to have undergraduate students use zebrafish as a research model to develop a real sense of research and laboratory work. The Department of Chemistry are also initiating research on zebrafish housed in the Department of Genetics.

News Archive

Haemophilia home infusion workshop
2017-12-17


 Description: haemophilia Tags: Haemophilia, community, patient, clinical skills, training 

Parents receive training for homecare of their children with haemophilia.
Photo Supplied


Caregivers for haemophilia patients, and patients themselves from around the Free State and Northern Cape attended a home infusion workshop held by the Clinical Skills unit in the Faculty of Health Sciences in July 2017. “It felt liberating and I feel confident to give the factor to my son correctly,” said Amanda Chaba-Okeke, the mother of a young patient, at the workshop. Her son, also at the workshop, agreed. “It felt lovely and good to learn how to administer factor VIII.” 

Clinical skills to empower parents and communities

There were two concurrent sessions: one attended by doctors from the Haemophilia Treatment Centre, and the other attended by community members including factor VIII and XI recipients, caregivers and parents. The doctors’ meeting was shown informative videos and demonstrations on how to administer the newly devised factor VII and XI kit, and discussed the pressing need for trained nurses at local clinics. Dr Jaco Joubert, a haematologist, made an educational presentation to the community members.

The South African Haemophilia Foundation was represented by Mahlomola Sewolane, who gave a brief talk about the role of the organisation in relation to the condition. Meanwhile, procedural training in the simulation laboratory involved doctors and nurses helping participants to learn the procedures by using mannequins and even some volunteers from among the patients.

A medical condition causing serious complications
Haemophilia is a medical condition in which the ability of the blood to clot is severely impaired, even from a slight injury. The condition is typically caused by a hereditary lack of a coagulation factor, most often factor VIII. Usually patients must go through replacement therapy in which concentrates of clotting factor VIII (for haemophilia A) or clotting factor IX (for haemophilia B) are slowly dripped or injected into the vein, to help replace the clotting factor that is missing or low. Patients have to receive this treatment in hospital.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept