Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 December 2018 | Story Leonie Bolleurs | Photo Anja Aucamp
Research possibilities of zebrafish exposed
Leading global genetics laboratories are replacing research on human and animal populations with zebrafish, says Prof Paul Grobler, Head of the UFS Department of Genetics.

The UFS Department of Genetics is on par with current research trends in terms of their zebrafish project. About a year has passed since they seriously started focusing on the potential of this tiny four-centimetre-long fish, and the possibilities are hugely exciting.

Looks are deceiving

Leading global genetics laboratories are replacing research on human and animal populations with zebrafish due to several fascinating reasons, of which the most profound is probably that the zebrafish share large portions of its genome with mammals. For genetics researchers this may make a lot of sense, but most people battle to see any resemblance between a six-foot-tall rugby player or 600 kg buffalo and a small, nearly transparent fish. It is in the detail, the researchers say.

Fast, effective, and visible

“The complete genome sequence of the zebrafish is known, and as much as 84% of genes known to be associated with human disease have zebrafish counterparts,” explains Head of Department, Prof Paul Grobler. Another advantage is the fast breeding rate and short generation time, and the fact that some research is ethically more justifiable when done on fish larvae rather than on adult mammals. The fact that zebrafish embryos are virtually transparent, also allow researchers to examine the development of internal structures without effort. Every blood vessel in a living zebrafish embryo is visible under a low-power microscope.

Multidisciplinary

Zebrafish provide research potential for many different study fields besides that of Prof Grobler and his team, Sue Rica Schneider and Dr Willem Coetzer. In the near future, they aim to have undergraduate students use zebrafish as a research model to develop a real sense of research and laboratory work. The Department of Chemistry are also initiating research on zebrafish housed in the Department of Genetics.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept