Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 December 2018 | Story Leonie Bolleurs | Photo Anja Aucamp
Research possibilities of zebrafish exposed
Leading global genetics laboratories are replacing research on human and animal populations with zebrafish, says Prof Paul Grobler, Head of the UFS Department of Genetics.

The UFS Department of Genetics is on par with current research trends in terms of their zebrafish project. About a year has passed since they seriously started focusing on the potential of this tiny four-centimetre-long fish, and the possibilities are hugely exciting.

Looks are deceiving

Leading global genetics laboratories are replacing research on human and animal populations with zebrafish due to several fascinating reasons, of which the most profound is probably that the zebrafish share large portions of its genome with mammals. For genetics researchers this may make a lot of sense, but most people battle to see any resemblance between a six-foot-tall rugby player or 600 kg buffalo and a small, nearly transparent fish. It is in the detail, the researchers say.

Fast, effective, and visible

“The complete genome sequence of the zebrafish is known, and as much as 84% of genes known to be associated with human disease have zebrafish counterparts,” explains Head of Department, Prof Paul Grobler. Another advantage is the fast breeding rate and short generation time, and the fact that some research is ethically more justifiable when done on fish larvae rather than on adult mammals. The fact that zebrafish embryos are virtually transparent, also allow researchers to examine the development of internal structures without effort. Every blood vessel in a living zebrafish embryo is visible under a low-power microscope.

Multidisciplinary

Zebrafish provide research potential for many different study fields besides that of Prof Grobler and his team, Sue Rica Schneider and Dr Willem Coetzer. In the near future, they aim to have undergraduate students use zebrafish as a research model to develop a real sense of research and laboratory work. The Department of Chemistry are also initiating research on zebrafish housed in the Department of Genetics.

News Archive

Lithium-ion batteries research set to improve ordinary lives
2016-02-11

Description: Dr Lehlohonolo Koao  Tags: Dr Lehlohonolo Koao

Dr Koao is making a much-needed contribution in improving lives of ordinary people through his research on lithium-ion batteries.

The future of relevant and top-notch scientific research at the Qwaqwa Campus is in good hands. Dr Lehlohonolo Koao is one of the five members of the Vice-Chancellor’s Prestige Scholars Programme (PSP) on the Qwaqwa Campus.

The need to improve the efficiency of heating mechanisms in his immediate community in Qwaqwa, and the support he receives from the PSP, have become catalysts for his current research project on lithium-ion batteries. According to Dr Koao, the study will focus on producing batteries that last longer, store more energy, are cheaper to manufacture, and are environmentally friendly when being disposed of. These are key factors in solar energy.

‘’The majority of households in my neighbourhood have benefited from the government’s project of providing households with solar panels to help with lighting, cooking, and heating without worrying about the ever-increasing electricity costs,’’ said Dr Koao.

‘’Since my arrival in the area, I have realized that the heat absorption rate of the batteries used by solar panels is not enough. As a result, these batteries also lack enough power to sustain the supply throughout the day, especially on a cloudy day,’’ he said.

His research project focuses on improving the efficiency of lithium-ion batteries that are now commonly used in portable electronics, such as cell phones and laptops. This kind of battery is rapidly replacing the usual lead-acid batteries. Dr Koao’s determination to contribute towards a safer and more efficient heating absorption system has made him move away completely from his PhD study on lighting material.

‘’My previous study was on reducing the power usage on domestic and industrial lights as they use more electricity. This study, on the other hand, will enhance power retention in the batteries for improved daily life since cell phones, solar panels, and laptops, to mention only a few, are now a way of life,’’ he added.

Dr Koao is a Senior Lecturer in the Department of Physics, where he specializes in solid state materials.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept