Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 December 2018 | Story Thabo Kessah | Photo Thabo Kessah
Charlotte Maxeke
Residence students preparing old tyres to use in new playing swings.

The name Charlotte Maxeke is, since time immemorial, associated with ‘hope’ for the downtrodden Black majority. And the name Fulufhelo means ‘hope’ in Tshivenda, the language spoken mainly in Limpopo, her birth province. She was the first black South African woman to earn a degree, a Bachelor of Science from the Wilberforce University in the Unites States of America in 1901.

Khayelisha and Khayelethu also project a very high expectation of ‘hope’. Considering our painful past dominated by the 1913 Land Act, the former literally means ‘our new home’, whilst the latter means ‘our home’.

Fast forward to 2018 at the University of the Free State’s Qwaqwa Campus. These are the names of student residences that brought hope to the needy when they collaborated with Community Engagement to give back to their communities.

“The need to give back was sparked by our encounter with needy students on campus. We then thought that if we could do the little for our fellow students who are part of the No Student Hungry (NSH) campaign, we could actually extend this to those who are even worse off,” said Beyoncé Matsoso, Prime of Charlotte Maxeke and Residence for first year students.

“Taking time out to give toys, play with the kids on the swings we erected for them, helping them with their laundry and giving them fruit and food bought from our own pockets gave us a lot of satisfaction,” said Beyoncé, a final year BA Psychology and Languages student.

Acknowledging the role played by Residence Head, Makeresemese Mokhatla, in the whole exercise was Sikolethu Dodo, Prime of Khayelitsha / Khayelethu Residence.

“Having had a dialogue on how we can make other people’s lives better with our Residence Head Makeresemese Mokhatla and Mme Matsoso from Community Engagement led to this initiative. Some of us will be going out to the world of work soon and this has equipped us with necessary skills like compassion,” said Sikolethu, a final year BAdmin student.

The centres visited were the Itsoseng housing disabled children as well as the Team Spirit Hospice.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept