Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 December 2018 | Story Charlene Stanley
Advising pic
Aligning your study field with your career aspirations can be challenging. Academic advising provides solutions.

Over the past few years, institutions of higher learning have experienced an explosive growth in student numbers. Student volumes are often more than campus administrations can effectively deal with. On the students’ side, coming to grips with and transitioning into university and navigating the academic-content processes and technology can be an overwhelming experience – especially for so-called ‘first-generation’ students. Many students often have fixed career dreams, but not a clear knowledge of what they need to get there. This is where academic advising can be a guiding light.

 How Academic Advising works

 Academic advising fosters the development, engagement, and support of students and provides guidance towards academic, personal, and career success. “Through academic advising we basically make sure that students’ career prospects align with their academic programme,” explains Prof Francois Strydom, Senior Director of the Centre for Teaching and Learning (CTL), which houses the UFS Academic Advisement Unit. It is also not only the academic needs of students that are addressed. He describes advising as a ‘hub of the wheel’ that connects students to different departments and services across campus, depending on their needs.

Evolution of Academic Advising

Prof Strydom explains that some type of advising has always existed on university campuses in the form of career counsellors and faculty managers assisting with student queries. But with many institutions virtually doubling in size over the past few years, many students started ‘falling through the cracks’. “There’s been a great need to professionalise this service and to have a clearly defined structure in place with dedicated advisers to assist students quickly and efficiently,” he says. The UFS academic advising team has been playing a leading role in securing a seven-institution collaborative University Capacity Development Grant (UCDG) in 2017 to professionalise the practice in South Africa. 

“We focus on communicating with and serving Kovsie students in ways that really speaks to them, for instance through the Academic Advising Facebook page, email (advising@ufs.ac.za), the electronic magazine (Kovsie Advice), plus face-to-face interactions in the faculties, the Sasol Library in Bloemfontein, and in the TK Mopeli Building on our Qwaqwa Campus,” says Gugu Tiroyabone, who heads the Academic Advisement Unit within CTL. She emphasises that advising is a shared responsibility. “Advisers can never decide for the students but are there to assist them to make informed decisions themselves.”

Data collected from the 1 456 students who utilised continuous academic advising services at the UFS during 2017, has irrefutably shown that these students have a higher probability of passing most of their modules with over 70% – a clear indication that academic advising really works.

Paving a professional path for advisers

Drawing on eight years of ongoing development in academic advising, the UFS piloted the first nationally contextualised Short Learning Programme for advisers in order to guide the development of this practice.

The pilot of the fully accredited Academic Advising Professional Development (AAPD) Short Learning Programme (SLP), which will be presented twice a year, was presented by the CTL early in October 2018 and represented all seven institutions forming part of the UCDG collaboration (UFS, NMU, Wits, UCT, DUT, MUT, and UP).

With the SLP’s ultimate goal to build and cultivate the practice and its practitioners, this national initiative is likely to be one of the enablers for the development and enhancement of student success in South Africa.

 

News Archive

Two scientists part of team that discovers the source of the highest energy cosmic rays at the centre of the Milky Way
2016-03-22

Description: Giant molecular clouds  Tags: Giant molecular clouds

Artist's impression of the giant molecular clouds surrounding the Galactic Centre, bombarded by very high energy protons accelerated in the vicinity of the central black hole and subsequently shining in gamma rays.
Artist's impression: © Dr Mark A. Garlick/ H.E.S.S. Collaboration

Spotlight photo:
Dr Brian van Soelen and Prof Pieter Meintjes of the UFS Department of Physics.
Photo: Charl Devenish

H.E.S.S. (High Energy Stereoscopic System) scientists publically revealed their latest galactic discovery in the international science journal, Nature, on 16 March 2016. These scientists were able to pinpoint the most powerful source of cosmic radiation – which, up to now, remained a mystery.

Part of this team of scientists are Prof Pieter Meintjes and Dr Brian van Soelen, both in the University of the Free State (UFS) Department of Physics. Dr Van Soelen explains that they have discovered a proton PeVatron – a source that can accelerate protons up to energies of ~1 PeV (10^15 eV) – at the centre of the Milky Way. The supermassive black hole called Sagittarius A has been identified as the most plausible source of this unprecedented acceleration of protons.

The protons are accelerated to Very High Energy (VHE) gamma rays. The energy of these protons are 100 times larger than those achieved by the Large Hadron Collider at CERN (the European Organization for Nuclear Research).

According to Dr Van Soelen, the fact that this research has been published in Nature demonstrates the importance and pioneering nature of the research conducted by H.E.S.S. The H.E.S.S. observatory – operational in Namibia – is a collaboration between 42 scientific institutions in 12 countries.

In 2006, H.E.S.S. was awarded the Descartes Prize of the European Commission – the highest recognition for collaborative research – and in 2010 the prestigious Rossi Prize of the American Astronomical Society. The extent of the observatory’s significance places it among the ranks of the Hubble Space Telescope and the telescopes of the European Southern Observatory in Chile.

“The next generation VHE gamma-ray telescope,” Dr Van Soelen says, “will be the Cherenkov Telescope Array (CTA), which is currently in the design and development stage.” Both Dr Van Soelen and Prof Meintjes are part of this project as well.

H.E.S.S. has issued a complete statement about the paper published in Nature.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept